

128K Word x 8 Bit

CS18LV11253

		Cover	Sheet and Revision Status	
版別 (Rev.)	DCC No	生效日 (Eff. Date)	變更說明(Change Description)	發行人 (Originator)
1.0	20160063	Jul. 12, 2016	New issue	Hank Lin
2.0	20170013	Jun. 22, 2017	Revise 32L STSOP(I)-8x13.4mm package outline	Hank Lin

CS18LV11253

Rev. 2.0

GENERAL DESCRIPTION	1
FEATURES	1
Product Family	1
PIN CONFIGURATIONS	2
FUNCTIONAL BLOCK DIAGRAM	2
PIN DESCRIPTIONS	3
TRUTH TABLE	
ABSOLUTE MAXIMUM RATINGS ⁽¹⁾	4
OPERATING RANGE	4
CAPACITANCE ⁽¹⁾ (T _A = 25°C, f =1.0 MHz)	4
DC ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C \sim 70^{\circ}C$, $V_{CC} = 3.0V$)	5
DATA RETENTION CHARACTERISTICS ($T_A = 0^{\circ}C \sim 70^{\circ}C$)	6
AC TEST CONDITIONS	7
KEY TO SWITCHING WAVEFORMS	7
AC TEST LOADS AND WAVEFORMS	7
AC ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C \sim 70^{\circ}C$; $V_{CC}=3.0V$)	8
SWITCHING WAVEFORMS (READ CYCLE)	8
AC ELECTRICAL CHARACTERISTICS $(T_A = 0^{\circ}C \sim 70^{\circ}C ; V_{CC}=3.0V)$	10
SWITCHING WAVEFORMS (WRITE CYCLE)	11
ORDER INFORMATION	
	12
PACKAGE OUTLINE	

CS18LV11253

GENERAL DESCRIPTION

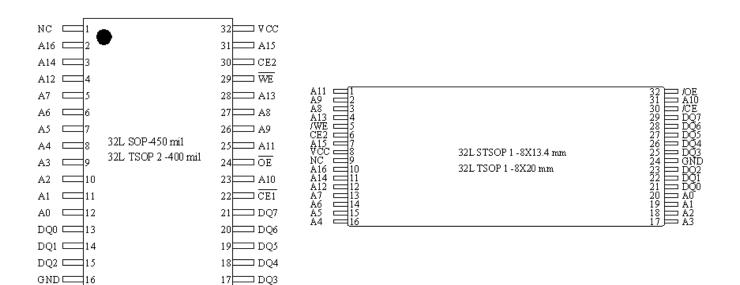
The CS18LV11253 is a high performance; high speed and super low power CMOS Static Random Access Memory organized as 131,072 words by 8bits and operates from a wide range of 2.7 to 3.6V supply voltage. Advanced CMOS technology and circuit techniques provide high speed, super low power features and maximum access time of 45/55/ 70ns in 3.0V operation. Easy memory expansion is provided by an active LOW chip enable inputs (/CE1, CE2) and active LOW output enable (/OE).

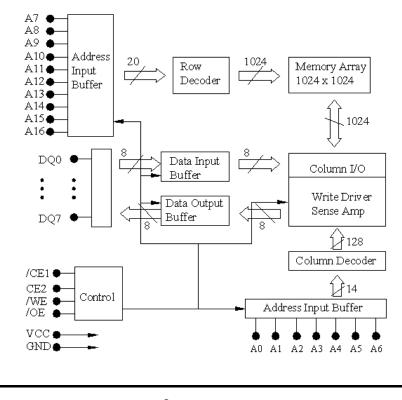
The CS18LV11253 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS18LV11253 is available in JEDEC standard 32-pin STSOP (8x13.4 mm), TSOP (8x20mm), TSOP (II) (400mil), and SOP (450 mil) packages.

FEATURES

- Low operation voltage : 2.7 ~ 3.6V
- Ultra-low power consumption :
 - operating current: 10mA (Max.) @t_{AA}=45ns
 - standby current : 2uA (Typ.)
- High speed access time: 45/55/70ns
- Automatic power down when chip is deselected.
- Three state outputs and TTL compatible, fully static operation
- Data retention supply voltage as low as 1.5V.
- Easy expansion with /CE1, CE2 and /OE options.

Product Family


Part No.	Operating Temp	Standby (Max.) (V _{CC} = 3.6V)	V _{CC.} Range (V)	Speed (ns)	Package Type
CS18LV11253	0~70°C	8uA	2.7~3.6		32L SOP 32L STSOP 1 32L TSOP 1
	-40~85°C	δUA	2.1~3.0	45/ 55/ 70	32L TSOP 1 32L TSOP 2 Dice


128K Word x 8 Bit

CS18LV11253

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

2

Rev. 2.0

128K Word x 8 Bit

CS18LV11253

PIN DESCRIPTIONS

Name	Туре	Function
A0 – A16	Input	Address inputs for selecting one of the 131,072 x 8 bit words in the RAM
/CE1, CE2	Input	/CE1 is active LOW and CE2 is active HIGH. Both chip enables must be active when data read from or write to the device. If either chip enable is not active, the device is deselected and in a standby power down mode. The DQ pins will be in high impedance state when the device is deselected.
/WE	Input	The Write enable input is active LOW. It controls read and write operations. With the chip selected, when /WE is HIGH and /OE is LOW, output data will be present on the DQ pins, when /WE is LOW, the data present on the DQ pins will be written into the selected memory location.
/OE	Input	The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when /OE is inactive.
DQ0~DQ7	I/O	These 8 bi-directional ports are used to read data from or write data into the RAM.
V _{CC}	Power	Power Supply
Gnd	Power	Ground
NC		No connection

TRUTH TABLE

MODE	/CE1	CE2	/WE	/OE	DQ0~7	V _{CC} Current
Standby	Н	Х	Х	Х	High Z	
	Х	L	Х	Х	riigit Z	I _{CCSB} , I _{CCSB1}
Output Disable	L	Н	Н	Н	High Z	I _{CC}
Read	L	Н	Н	L	D _{OUT}	I _{CC}
Write	L	Н	L	Х	D _{IN}	I _{CC}

3

Rev. 2.0

128K Word x 8 Bit

CS18LV11253

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
T _{BIAS}	Temperature Under Bias	-40 to +125	OO
T _{STG}	Storage Temperature	-60 to +150	OC
PT	Power Dissipation	1.0	W

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc			
Commercial	0~70°C	2.7V ~3.6V			
Industrial	-40~85°C	2.7V ~ 3.6V			

CAPACITANCE ⁽¹⁾ (T_A = 25°C, f =1.0 MHz)

Symbol	Parameter	Conditions	MAX.	Unit
C _{IN}	Input Capacitance	V _{IN} =0V	6	pF
C _{DQ}	Input/output Capacitance	V _{I/O} =0V	8	pF

This parameter is guaranteed and not tested.

128K Word x 8 Bit

CS18LV11253

DC ELECTRICAL CHARACTERISTICS (T_A = 0°C ~70°C, V_{CC} = 3.0V)

Name	Parameter	Test Condition	MIN	TYP ⁽¹⁾	MAX	Unit
V _{IL}	Guaranteed Input Low Voltage ⁽³⁾	V _{CC} =3.0V	-0.3		0.8	V
V _{IH}	Guaranteed Input High Voltage ⁽²⁾	V _{CC} =3.0V			Vcc+0.3	V
IIL	Input Leakage Current	V_{CC} =MAX, V_{IN} =0 to V_{CC}	-1		1	uA
I _{OL}	Output Leakage Current	$V_{CC}=MAX, /CE1=V_{Ih}, \text{ or } CE2=V_{IL,} \text{ or} \\ /OE=V_{Ih, \text{ or }} /WE=V_{IL} V_{IO}=0V \text{ to } V_{CC}$	-1		1	uA
V _{OL}	Output Low Voltage	V _{CC} =MAX, I _{OL} =2.1mA			0.4	V
V _{OH}	Output High Voltage	V_{CC} =MIN, I_{OH} = -1.0mA	2.4			V
I _{CC}	Operating Power Supply Current	F=fmax, V _{CC} =V _{CC} max, I _{OUT} =0mA, V _{IN} $≥V_{CC}$ -0.2V or V _{IN} $≤$ 0.2V			10	mA
I _{CCSB}	TTL Standby Supply	/CE1=V _{IH} , I _{DQ} =0mA,			0.4	mA
I _{CCSB1}	CMOS Standby Current	/CE1≧V _{CC} -0.2V, CE2= 0.2V, V _{IN} ≧ V _{CC} -0.2V or V _{IN} ≦0.2V,		2	8	uA

1. Typical characteristics are at TA = 25°C.

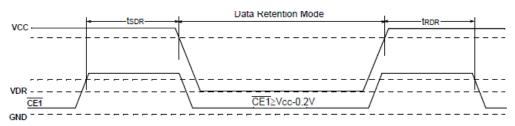
2. Overshoot: VCC +2.0V in case of pulse width *≦*20ns.

3. Undershoot: - 2.0V in case of pulse width \leq 20ns.

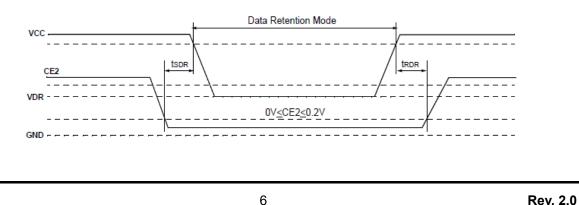
4. Overshoot and undershoot are sampled, not 100% tested.

128K Word x 8 Bit

CS18LV11253


DATA RETENTION CHARACTERISTICS ($T_A = 0^{\circ}C \sim 70^{\circ}C$)

Name	Parameter	Test Condition	MIN	$TYP^{(1)}$	MAX	Unit
V _{DR}	V_{CC} for Data Retention /CE1≧V _{CC} -0.2V, V _{IN} ≧		1.5			V
	V_{CC} -0.2V or $V_{IN} \leq 0.2V$					
		$/CE1 \ge V_{CC}$ -0.2V, V_{CC} =1.5V				
I _{CCDR}	Data Retention Current	$V_{IN} \ge V_{CC}$ -0.2V or $V_{IN} \le 0.2V$		2	6	uA
T _{CDR}	Chip Deselect to Data		0			ns
• CDR	Retention Time	Refer to Retention	•			no
t _R	Operation Recovery Time	Waveform	t _{RC (2)}			ns

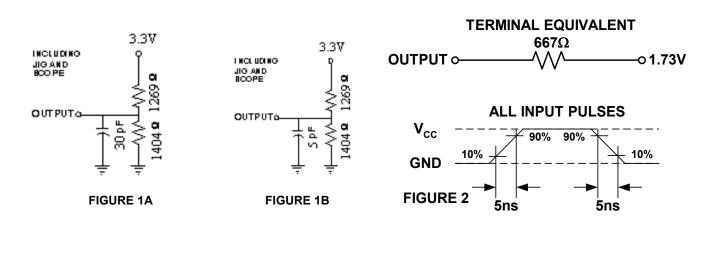

1. $T_A = 25 \,^{\circ}C$

1. t_{RC}= Read Cycle Time

LOW V_{CC} DATA RETENTION WAVEFORM (2) (CE2 Controlled)

128K Word x 8 Bit

CS18LV11253


Rev. 2.0

AC TEST CONDITIONS

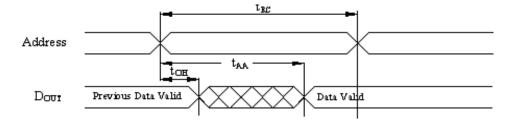
KEY TO SWITCHING WAVEFORMS

Input Pulse Levels	V _{CC} /0V	WAVEFORMS	INPUTS	OUTPUTS
Input Rise and Fall Times	3ns		MUST BE STEADY	MUST BE STEADY
Input and Output Timing Reference Level	0.5Vcc		MAY CHANGE FROM H TO L	WILL BE CHANGE FROM H TO L
Output Load	See Figure 1A and 1B		FROM H TO L	FROMETOL
			MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
			DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN
			DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE

AC TEST LOADS AND WAVEFORMS

128K Word x 8 Bit

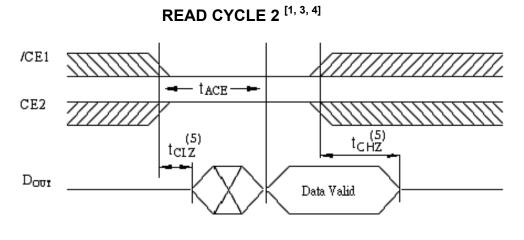
CS18LV11253

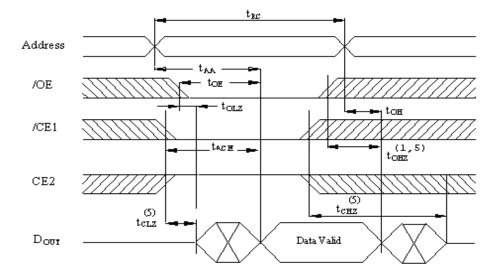

AC ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C \sim 70^{\circ}C$; $V_{cc}=3.0V$)

JEDEC	Symbol	Description	-45		-55		-70		Unit
Name	Symbol	Description	MIN	MAX	MIN	MAX	MIN	MAX	
t _{AVAX}	t _{RC}	Read Cycle Time	45		55		70		ns
t _{AVQV}	t _{AA}	Address Access Time		45		55		70	ns
t_{ELQV}	t _{ACE}	Chip Select Access Time		45		55		70	ns
\mathbf{t}_{GLQV}	t _{OE}	Output Enable to Output Valid		22		25		35	ns
t _{ELQX}	t_{CLZ} ⁽⁵⁾	Chip Select to Output Low Z	10		10		10		ns
t_{GLQX}	t_{OLZ} (5)	Output Enable to Output in Low Z	5		5		5		ns
t _{EHQZ}	t _{CHZ} ⁽⁵⁾	Chip Deselect to Output in High Z		18	0	20	0	25	ns
t _{GHQZ}	t _{OHZ} ⁽⁵⁾	Output Disable to Output in High Z		18	0	20	0	25	ns
t _{AXOX}	t _{OH}	Address Change to Out Disable	10		10		10		ns

< READ CYCLE >

SWITCHING WAVEFORMS (READ CYCLE)


READ CYCLE 1 ^[1, 2, 4]



128K Word x 8 Bit

CS18LV11253

READ CYCLE 3 [^{1, 4]}

NOTES:

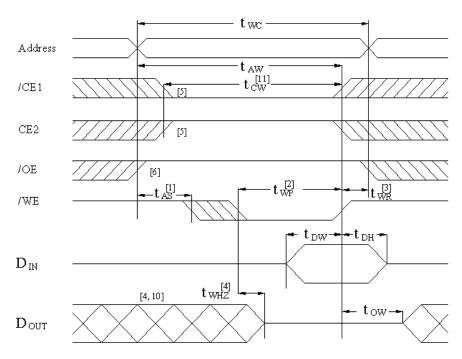
- 1. /WE is high in read Cycle.
- 2. Device is continuously selected when /CE1 = VIL and $CE2=V_{IH}$.
- 3. Address valid prior to or coincident with /CE1 transition low and /or CE2 transition high.
- 4. $/OE = V_{IL}$.
- 5. Transition is measured ±500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.

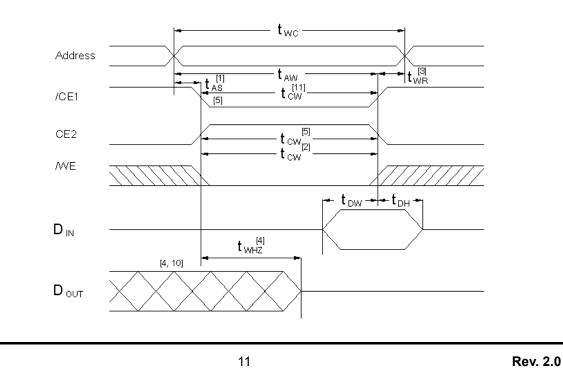
128K Word x 8 Bit

CS18LV11253

AC ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C \sim 70^{\circ}C$; $V_{cc}=3.0V$)

< WRITE CYCLE >

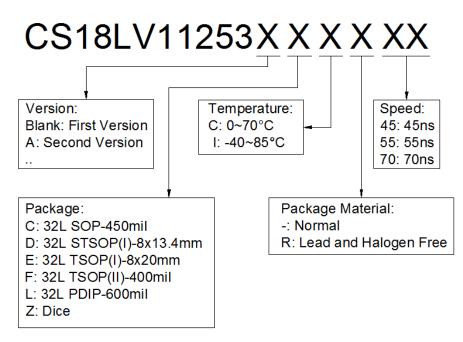

JEDEC	Symbol	Description	-4	45	-{	55	-	70	Unit
Name	Symbol	Description	MIN	MAX	MIN	MAX	MIN	MAX	Unit
t _{AVAX}	t _{WC}	Write Cycle Time	45		55		70		ns
t _{E1LWH}	t _{CW}	Chip Select to End of Write	35		45		60		ns
t _{AVWL}	t _{AS}	Address Setup Time	0		0		0		ns
t _{AVWH}	t _{AW}	Address Valid to End of Write	35		45		60		ns
t _{WLWH}	t _{WP}	Write Pulse Width	35		40		50		ns
t _{WHAX}	t _{WR}	Write Recovery Time	0		0		0		ns
t _{WLQZ}	t_{WHZ} ⁽¹⁰⁾	Write to Output in High Z		18		20		25	ns
t _{DVWH}	t _{DW}	Data to Write Time Overlap	25		25		30		ns
t _{WHDX}	t _{DH}	Data Hold for Write End	0		0		0		ns
t _{WHOX}	t _{OW} ⁽¹⁰⁾	End of Write to Output Active			5		5		ns


CS18LV11253

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE1 (Write Enable Controlled)

WRITE CYCLE2 (Chip Enable Controlled)


128K Word x 8 Bit

CS18LV11253

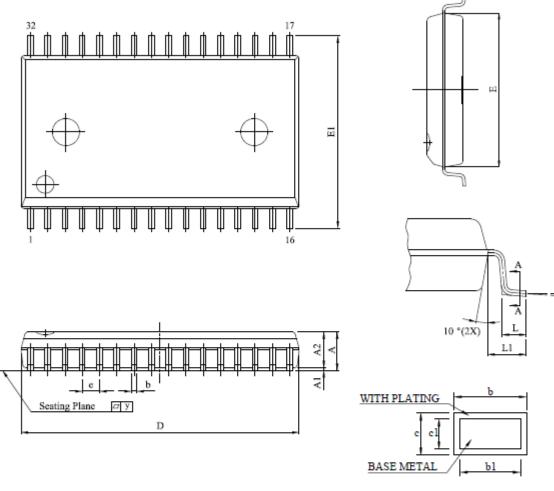
NOTES:

- 1. TAS is measured from the address valid to the beginning of write.
- 2. The internal write time of the memory is defined by the overlap of /CE1 and CE2 active and /WE low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
- 3. TWR is measured from the earlier of /CE1 or /WE going high or CE2 going low at the end of write cycle.
- 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the /CE1 low transition or CE2 high transition occurs simultaneously with the /WE low transitions or after the /WE transition, output remain in a high impedance state.
- 6. /OE is continuously low (/OE = V_{IL}).
- 7. DOUT is the same phase of write data of this write cycle.
- 8. DOUT is the read data of next address.
- 9. If /CE1 is low and CE2 is high during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- 10. Transition is measured ±500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.
- 11. T_{CW} is measured from the later of /CE1 going low or CE2 going high to the end of write.

ORDER INFORMATION

Note: Package material code "R" meets ROHS

12



128K Word x 8 Bit

CS18LV11253

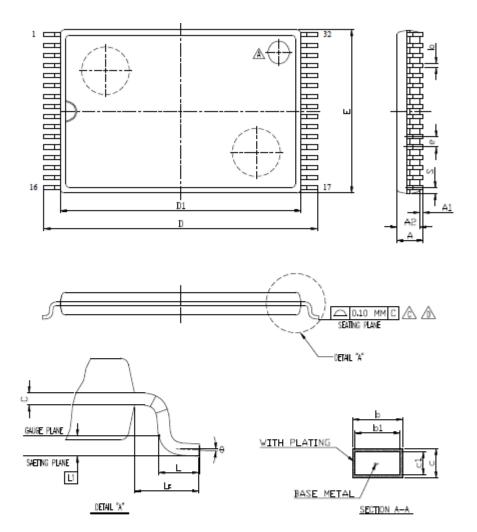
PACKAGE OUTLINE

SECTION A-A

<u></u> SYI	MBOL															
UNIT		A	A1	A2	Ъ	61	C C	cl	D	E	El	e	L	Ll	у	Θ
	Min.	2.645	0.102	2.540	0.35	0.35	0.15	0.15	20.320	11.176	13.792	1.118	0.584	1.194	-	0°
mm	Nom.	2.821	0.229	2.680	-	-	-	-	20.447	11.303	14.097	1.270	0.834	1.397	-	-
	Max.	2.997	0.356	2.820	0.50	0.46	0.32	0.28	20.574	11.430	14.402	1.422	1.084	1.600	0.1	10°
	Min.	0.104	0.004	0.1000	0.014	0.014	0.006	0.006	0.800	0.440	0.543	0.044	0.023	0.047	-	0°
inch	Nom.	0.111	0.009	0.1055	-	-	-	-	0.805	0.445	0.555	0.050	0.033	0.055	-	-
	Max.	0.118	0.014	0.1110	0.020	0.018	0.012	0.011	0.810	0.450	0.567	0.056	0.043	0.063	0.004	10°

Note: Plating thickness spec : 0.3 mil ~ 0.8 mil.

13

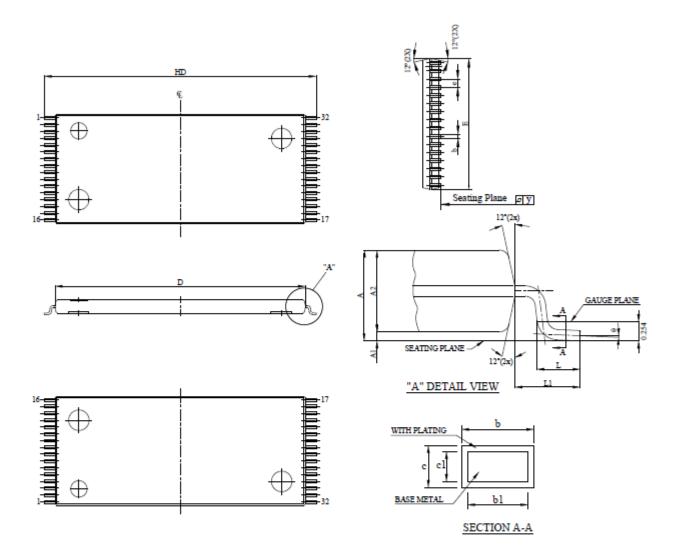

Rev. 2.0

θ

128K Word x 8 Bit

CS18LV11253

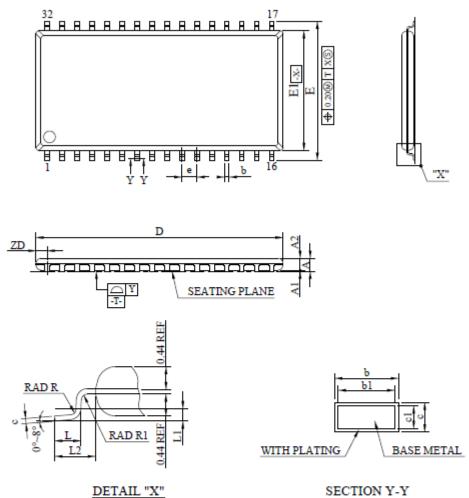
32L STSOP(I)-8x13.4mm


Note: Dimensions D1 and E do not include mold protrusions. D1 and E are maximum plastic body size dimensions including mold mismatch.

SY. UNIT	MBOL	A	Al	A2	Ъ	b 1	c	cl	Е	e	D	Dl	L	Ll	LE	s	θ
	Min.		0.05	0.90	0.17	0.17	0.10	0.10	7.90	0.50 TYP.	13.20	11.70	0.30		0.675	0.000	0
nm	Nom.			1.00	0.22	0.20	-	-	8.00		13.40	11.80	0.50	0.25 BSC		0.278 TYP.	3
	Max.	1.20		1.05	0.27	0.23	0.21	0.16	8.10		13.60	11.90	0.70	2000			5
	Min.		0.002	0.035	0.007	0.007	0.004	0.004	0.311	0.020 TYP.	0.520	0.461	0.012		0.027		0
inch	Nom.			0.039	0.009	0.008	-	-	0.315		0.528	0.465	0.020	0.010 BSC		0.0109 TYP.	3
	Max.	0.047		0.041	0.011	0.009	0.008	0.006	0.319		0.535	0.469	0.028	2.50			5

CS18LV11253

32L TSOP(I)-8x20mm


Note:	Plating	thickness	spec	: 0.3	mil	~ 0.8	mil.
-------	---------	-----------	------	-------	-----	-------	------

∕_SY1	MBOL															
UNIT		A	A1	A2	ь	61	u	cl	D	E	e	HD	L	Ll	у	Θ
	Min.	1.00	0.05	0.95	0.17	0.17	0.10	0.10	18.30	7.90	0.40	19.80	0.40	0.70	-	0°
mm	Nom.	1.10	0.10	1.00	0.22	0.20	I	-	18.40	8.00	0.50	20.00	0.50	0.80	-	-
	Max.	1.20	0.15	1.05	0.27	0.23	0.21	0.16	18.50	8.10	0.60	20.20	0.70	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.007	0.007	0.004	0.004	0.720	0.311	0.016	0.779	0.0157	0.0275	I	0°
inch	Nom.	0.0433	0.004	0.039	0.009	0.008	I	1	0.724	0.315	0.020	0.787	0.0197	0.0315	I	-
	Max.	0.0473	0.006	0.041	0.011	0.009	0.008	0.006	0.728	0.319	0.024	0.795	0.0277	0.0355	0.004	8°

CS18LV11253

32L TSOP2-400mil

DETAIL A

Note: Plating thickness spec : $0.3 \text{ mil} \sim 0.8 \text{ mil}$.

<u>SY</u>	MBOL								5	-			-					-	
UNIT		A	A1	A2	ь	bl	c	cl	D	Е	El	e	L	LI	L2	R	Rl	ZD	Y
	Min.	I	0.05	0.95	0.30	0.30	0.12	0.10	20.82	11.56	10.03	1.07	0.40			0.12	0.12		-
mm	Nom.	I	0.10	1.00	-	0.40	١	0.127	20.95	11.76	10.16	1.27 bsc	0.50	0.25 bsc	0.8 ref	-	I	0.95 ref	-
	Max.	1.20	0.15	1.05	0.52	0.45	0.21	0.16	21.08	11.96	10.29		0.60			0.25	I		0.10
	Min.	-	0.002	0.037	0.012	0.012	0.005	0.004	0.820	0.455			0.016	0.010 bsc		0.005	0.005		-
inch	Nom.	-	0.004	0.039	-	0.016	-	0.005	0.825	0.463	0.400	0.050 bsc	0.020		0.031 ref	-	-	0.037 ref	-
	Max.	0.047	0.006	0.042	0.020	0.018	0.008	0.006	0.830	0.471	0.405		0.024			0.010	-		0.004