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Understanding the system operator’s resilience to stressful situations is very important in designing 

adaptive systems. In this study we suggest a method to predict emotional granularity, a crucial personality 
trait that influences one’s ability to cope with highly demanding situations. To predict emotional 

granularity, we measured the coherence of brain activities with EEG, while participants were viewing 
affective images, and used random forest learning method for classification of participants. The results 

showed that EEG coherence could predict the individual’s emotional granularity with up to 88% accuracy.  
 

 
INTRODUCTION 

 
In order to design more effective human-machine systems 

that produce minimal demands on the operator, there have 
been many efforts to assess the system operator’s status in real 
time and adjust the system’s function accordingly. Measuring 
neurophysiological signals can help develop an operator 
model and aid regulation of automation (Byrne & 
Parasuraman, 1996). Thus far, real-time analysis of an 
operator’s mental workload state using EEG achieved 70%-86% 
accuracy (Parasuraman, 2013). For example, there is a visual 
monitoring task and classification with artificial neural 
networks by Wilson and Russell (2007), a reading span task, 
visuospatial n-back task, and sternberg task and classification 
with artificial neural networks by Baldwin and Penaranda 
(2012), or the Multi-Attribute Task Battery (MATB) and 
classification with Bayesian networks by Wang, Hope, Wang, 
Ji, and Gray (2013). 

Measuring the emotional state of the user and reflecting it 
on adaptive systems has been studied in many areas, as 
emotional states can influence perceived workload, attention, 
risk perception, decision-making, and subsequent coping 
behaviors (Jeon & Zhang, 2013; McKeown, 2014). In the 
current study, we focus on the granularity of with which 
individuals experience their emotional state. Psychological 
research demonstrates that individuals differ in the ability to 
experience emotions in a precise manner (emotional 
granularity; Barrett, Gross, Christensen, & Benvenuto, 2001). 
If someone reports multiple emotions (e.g., angry, sad, 
anxious) to the same degree across instances, s/he would be 
low in granularity. By contrast, if someone is being specific 
about his/her emotions by indicating a different emotional 
feeling on each occasion, s/he would be high in granularity.  

Emotional granularity is associated with emotional and 
social wellness. For example, high granularity individuals 
possess greater emotion-regulation skills (Barrett et al., 2001), 
greater resilience in the face of stress (Tugade, Fredrickson, & 
Barrett, 2004), and show less aggressive behavior in anger-
inducing situations (Pond et al., 2012). Low granularity 
individuals who experience emotions as more general states of 
negativity, on the other hand, are more likely to have major 
depression (Demiralp et al., 2012). Hence, assessing emotional 

granularity can help infer how system operators cope with 
difficult situations and what feedback the system should 
provide to mitigate successful human-computer interaction.  

 
METHODS 

 
In this study, we used coherence, as the strength of 

synaptic connections between two distant brain regions, which 
is a measure of synchrony between two distant brain areas. 
High coherence is interpreted as functional cortical integration 
(Maurits, Scheeringa, van der Hoeven, & de Jong, 2006), 
whereas low coherence is taken as functional isolation of brain 
regions associated with a cognitive task (Weiss & Mueller, 
2003) and with more focal activity (Reiterer, Pereda, & 
Bhattacharya, 2011). With the observed change in coherence 
value, we predicted the emotional granularity of the system 
operator using the random forests method.  
 
Participants 

 
A total of 38 participants were recruited from a local 

university. Two of them were excluded from the data analysis 
due to recording error and excessive signal noise. As a result, 
brain signals from 36 participants were analyzed (male = 25, 
female = 11). Average age was 21.5 with standard deviation 
2.02. There were no participants with previous neurological 
disease or emotional disorders. 

 
Granularity 

 
The ability to differentiate between emotions, or 

emotional granularity, was measured based on a survey 
described below. On the day before the EEG experiment, all 
participants completed an online questionnaire that measures 
emotional granularity. The questionnaire asked participants to 
recall fifteen episodes from the day before the questionnaire 
and to report to what extent (from 0 to 6) he/she experienced 
each of 20 emotional states (ten positive words: amusement, 
awe, contentment, excitement, gratitude, happiness, love, 
pleased, pride, serenity; ten negative words: anger, boredom, 
disgust, dissatisfied, downhearted, embarrassment, fear, 
gratitude, sadness, tired). This questionnaire was created based 
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on the Day Reconstruction Method (Kahneman et al., 2004) 
modified by Rice and Lindquist (in prep).  

Granularity is a behavioral measure in the sense that 
participants are not necessarily aware that they are reporting 
on their emotions in a more or less granular manner. Intraclass 
correlations (ICCs) for both positive and negative valence 
emotions were calculated and averaged to quantify individuals’ 
level of granularity (Kimhy et al., 2014; Tugade et al., 2004). 
A low ICC value implied that the participant could 
differentiate discrete emotional categories and express his or 
her experience with different emotional terms. Thus, average 
ICC value was subtracted from 1 to make higher value 
correspond to higher emotional granularity. The average 
granularity of all participants was 0.765 with standard 
deviation 0.168. Participants were grouped into three: High, 
Med, and Low. The high granularity participants’ value was 
higher than average plus one standard deviation (0.933; 5 
participants), while Low granularity group participants’ 
granularity value was lower than average minus one standard 
deviation (0.597; 6 participants). The rest of the participants 
who had a granularity value between 0.597 and 0.933 were 
categorized as the Mid-granularity group (25 participants).  

 
Stimuli 

 
Images from the International Affective Picture System 

(Lang, Bradley, & Cuthbert, 1999) were used. We selected 40 
emotional images that have been normed to induce awe, 
excitement, fear, and disgust, according to Mikels et al. (2005), 
in addition to 10 neutral images. Each image was presented for 
3 seconds with 10 seconds of rest. A black cross in the grey 
background was presented for 2 seconds every time before the 
stimulus presentation. The whole set was repeated after 3 
minutes of rest. Participants passively viewed these stimuli. 

 
Collecting EEG signal 

 
The participants were seated in front of a 40” TV monitor 

and 50” away from the TV. On the EEG cap they wore, 16 
electrodes (i.e., channels) were embedded covering Fp1/Fp2, 
F7/F8, FC3/FC4, T7/T8, P7/P8, FT7/FT8, P3/P4, C3/C4 areas, 
based on the modified 10-20 systems of the International 
Federation. Fpz was used as a ground, and left ear lobe was 
used as a reference. Signal was sampled 256 Hz, notch filtered 
at 60Hz using g.USPamp and g.tec LabVIEW modules from 
g.tec Medical Engineering.  

 
Figure 1 Montage of 16 EEG electrodes (marked with thick red 

circles) based on International 10-20 system 

The placement of electrodes was derived from meta-
analyses of the neuroimaging literature on emotion from 
“psychological constructionist” perspective (e.g., Kober et al., 
2008; Lindquist et al., 2012). Table 1 summarizes the location 
of 16 electrodes and related emotional processes. 

 
Table 1 Electrode locations and related emotional processes 

10-20 Location Related emotional processes 
Fp1/Fp2 Affect generation and representation 

F7/F8 
Integration of contextual information and previous 
knowledge of affect 

FT7/FT8 Categorize and apply a label to the current feeling 
FC3/FC4 Motor preparation 
T7/T8 Categorize and apply a label to the current feeling 
C3/C4 Representation of previous knowledge of affect 

P7/P8 
Visual perception; attention to affectively salient 
stimuli 

P3/P4 Categorize and apply a label to the current feeling 
 
 
Calculating change of coherence 

 
The EEG signal was band-pass filtered to get signal from 

the following four frequency bands: theta (4-7Hz), alpha (8-
12Hz), beta (13-30Hz), and gamma (30-50Hz). We paired 2 
channels and made 120 combinations of channel pairs (16C2), 
and for each pair (channel x and y) calculated the coherence 
value using power spectrum functions and the formula below. 

௫௬ሺ݂ሻܥ  ൌ 	 | ௫ܲ௬ሺ݂ሻ|ଶ௫ܲ௫ሺ݂ሻ ∗ 	 ௬ܲ௬ሺ݂ሻ 
 
Three coherence values were calculated for two epochs: 

from 1s before the stimulus onset to the stimulus onset (-1 ~ 
0s; baseline) and from the stimulus onset to 1s after the 
stimulus onset (0 ~ 1s). The first value was subtracted from 
the latter value to obtain ‘change of coherence’ values. The 
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values indicate how the coherence between two distinct brain 
areas has been changed while viewing emotional images. 

 
Classification with random forests 

 
Random forest is one of the ensemble machine learning 

methods that is easy to train and shows high accuracy and 
robust performance. In short, it samples attributes, builds 
multiple decision trees, and classifies observations according 
to the votes of trees (see Breiman, 2001 for a review). One 
advantage of random forest is that it can estimate the 
importance of attributes used to train a model. In this study, 
we ran the following sequence for each of four frequency 
bands (alpha, beta, gamma, and theta):  

(1) divided the data into 10 samples and used 9 for 
training and 1 for validating (10-fold cross-
validation), 

(2) used MATLAB TreeBagger class to create bagged 
decision trees for each training set, 

(3) calculated the average accuracy of 10 runs by 
comparing classification results with the actual data 
(see Figure 3), 

(4) picked top 10 important channel pairs (with all data 
as a training set), and 

(5) ran 10-fold cross-validation random forests again 
with 1, 2, 3, …, and 10 top pairs (see Figure 4) 

 
 

RESULTS 
 

Overall coherence change 
 
In all frequency bands, most of the channel pairs showed 

a decrement in coherence after the stimulus onset. Table 2 
shows how many channel pairs had decreased coherence value 
on average in each frequency band and granularity group. It 
shows that at least 101 out of 120 (84.2%) channel pairs 
showed coherence reduction in all cases. In high frequency 
bands (i.e., beta and gamma), the reduction was greater when 
granularity was higher. For example, in the gamma band a 
large number of channel pairs (34 pairs) showed significantly 
greater reduction in coherence. Figure 2 visualizes some of the 
channel pairs that revealed significantly greater coherence 
reduction in high granular group. Those channel pairs were 
broadly distributed over brain areas. 

 
Table 2 The number of channel pairs that showed decreased 
coherence (out of 120 channel pairs) for each frequency band and 
granularity group 

Granularity 
Group 

Theta  
(4-7Hz) 

Alpha  
(8-12Hz) 

Beta 
(13-30Hz) 

Gamma 
(30-50Hz) 

Low 120 107 114 101 
Mid 119 112 116 108 
High 118 108 117 115 

 
Figure 2 Channel pairs in gamma band that showed significantly 

more coherence reduction in high than low granularity group 
(only those with p-value less than α=0.005 was used here to avoid 

cluttered graph) 

 
Overall accuracy 

 
The accuracy of predicting granularity group (i.e., Low, 

Mid, and High group) with coherence change ranged from 82% 
to 89%. Figure 3 shows the average accuracy in each 
frequency band, when the random forest was created 10 times 
with 90% of data and tested with the rest of the data. The 10% 
of test data was different for all 10 runs (i.e., 10-fold cross-
validation).  

 

 
Figure 3. Accuracy of classification for each frequency band, 
obtained from 10-fold cross-validation (note that y-axis starts at 
0.800) 

For an overview, here we report the result of all data as a 
training set (i.e., step (4) in the ‘Classification with random 
forests’ section). Table 3 shows the error rates. “Inaccurate by 
one level” shows the proportion of instances that the actual 
group was adjacent to the predicted group (e.g., predicted to 
be Low when actual group is Mid, and vice versa). “Inaccurate 
by two levels” indicates the proportion of instances that Low 
was predicted to be High, or vice versa. These values can 
change as random forest method resample attributes to make 
decision trees every time the model runs.  
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Table 3 Inaccuracy of the prediction when all data was used for 
training set 

 Theta  
(4-7Hz) 

Alpha  
(8-12Hz) 

Beta 
(13-30Hz) 

Gamma 
(30-50Hz) 

Overall error 
rates 

15.56% 16.11% 13.85% 12.78% 

Inaccurate 
by one level 

15.00% 15.00% 12.74% 12.22% 

Inaccurate 
by two levels 

0.56% 1.11% 1.11% 0.56% 

 
 
Classification with important pairs 

 
By using random forest, we were able to obtain the 

importance of attributes. We sorted the attributes by the 
importance, which is obtained from the run with all data as a 
training set. From the top, we selected n (1≤n≤10) attributes 
and created random forests. In Figure 4, we report accuracy of 
10-fold cross-validation. 

The accuracy of classification sharply increased as the 
number of channel pairs included in the model increases. In all 
frequency bands, with only 5 pairs of channels the model 
could predict the granularity group of a participant with 80% 
accuracy. Note that the accuracy is always 0.6944 with only 
one pair. It was achieved by classifying all participants as 
“Mid” granularity group. 

 

 
Figure 4. Accuracy of classification when different number of 
channel pairs was used (1 through 10) for each frequency band 
and epoch 

Table 4 shows which pairs were used to calculate the 
classification accuracies in Figure 4. For example, accuracy of 
predicting granularity group was about 80%, with five channel 
pairs Fp1-Fp2, C3-P3, F7-C3, F7-P4, Fp1-FC8 and their 
coherence change value. 

 
 
 

Table 4 Channel pairs that were important in deciding 
granularity group 

Importance 
Rank 

Theta  
(4-7Hz)  

Alpha  
(8-12Hz) 

Beta 
(13-30Hz) 

Gamma 
(30-50Hz) 

1 Fp1 – Fp2 Fp1 – Fp2 Fp1 – Fp2 Fp1 – Fp2 
2 C3 – P3 FC4 – T8 Fp1 – P7 Fp1 – P8 
3 F7 – C3 Fp1 – F8 FT7 – P7 P7 – P4 
4 F7 – P4 Fp1 – T8 Fp1 – FC8 FC4 – T8 
5 Fp1 – FC8 FC4 – C4 FC8 – P7 F7 – P7 
6 FC4 – P7 Fp2 – P7 Fp1 – FC4 FC8 – P8 
7 F8 – P7 T7 – P4 Fp1 – T7 FT7 – P3 
8 T7 – P7 FC5 – P4 Fp2 – P7 FC4 – C3 
9  FC5 – C4 Fp1 – P3 FC4 – C3 Fp1 – P7 
10 FT7 – P4 Fp1 – C3 Fp1 – T8 FT7 – P7 

 
 

DISCUSSION 
 
Most channel pairs showed coherence reduction after 

stimulus onset. This finding implies that brain areas were less 
synchronized while viewing the emotional images as 
compared to a rest period. It also indicated that the distant 
brain areas processed emotional information in more 
decoupled fashion (Weiss & Muller, 2003).  

With these coherence patterns, we were able to predict the 
granularity level of a participant with adequately high 
accuracy. It ranged from 82% to 88%, depending on the 
frequency band. This means that the 2 seconds of EEG data (1 
second before viewing an emotional image and 1 second while 
viewing an emotional image) and random forest method can 
predict the level of people’s granularity. Similar accuracy was 
achievable, with only about 7 pairs of channel pairs, through 
the attribute evaluation of the random forest method. It 
suggests that less than 14 channels can do such an accurate 
prediction. We expect that the need of channels for prediction 
will decrease significantly with other EEG measures (e.g., 
P300). Notably, granularity was assessed the day prior to 
emotion image viewing. Our findings are thus all the more 
impressive because they show that brain activity during 
emotional image viewing can be used to predict emotional 
granularity, a stable personality trait associated with how 
individuals experience emotions in daily life. 

However, this coherence difference between granularity 
groups may be due to other processes that are not immediately 
related to emotional processes, such as visual search, 
conscientiousness, attention to detail, and so forth. Further 
analysis with ERP method will help alleviate these concerns.  

Overall, this study confirmed the possibility of EEG 
coherence metric as a tool to assess the system operator. By 
understanding the system operators’ emotional granularity, we 
will be able to infer their personalities, such as flexibility in 
demanding situations (e.g., Tugade, Fredrickson, & Barrett, 
2004). This will help identify appropriate adaptive strategies 
for effective systems that maximize the operator’s ability.  
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