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Abstract
There is a significant progress in the development of brain-controlled mobile robots and robotic arms in the recent years. New
advances in electroencephalography (EEG) technology have led to the possibility of controlling external devices, such as
robots, directly via the brain. The development of brain-controlled robotic devices has allowed people with bodily disabilities
to enhance their mobility, individuality, and many types of activity. This paper provides a comprehensive review of EEG
signal processing in robot control, including mobile robots and robotic arms, especially based on noninvasive brain computer
interface systems. Various filtering approaches, feature extraction techniques, and machine learning algorithms for EEG
classification are discussed and summarized. Finally, the conditions of the environments in which robots are used and robot
types are also discussed.

Keywords Brain–computer interface (BCI) · Brain-controlled robotic systems · EEG · ERD/ERS · Intelligent system · P300 ·
SSVEP

1 Introduction

In addition to the use of robots in industry, their use in daily
human life, especially as an assistant for people with dis-
abilities, is increasing. Robots can be controlled by a healthy
person with the help of an input device, such as a mouse and
a keyboard. However, these input interfaces are not practical
for people with body disabilities, such as multiple sclero-
sis (MS) or amyotrophic lateral sclerosis (ALS) patients. In
most cases, these patients cannot walk or use their hands
and arms, or even speak. Thus, these people cannot easily
transmit their thoughts or required actions to robots using
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these conventional interfaces. The development of brain-
controlled robots, which can be controlled directly from the
brain, would be very useful in such cases. For this purpose,
a brain–computer interface (BCI) system can provide alter-
native interaction between human brain and external devices
such as a robot [1]. BCI systems in general can be classified
into two types according to the method of capturing brain
signal: invasive and noninvasive [2]. In invasive BCIs, brain
signals are captured inside the brain (using electrodes located
under the skull), whereas in noninvasive BCIs, signals are
captured from locations outside the brain. The signals cap-
tured via an invasive BCI are stronger; however, this type
requires surgery [3]. For this reason, noninvasive BCIs are
preferable in many cases and more easy to use in daily life.
This review focuses only on noninvasive BCIs.

Different techniques for reading brain activity exist:
electroencephalography (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI), and
functional near-infrared spectroscopy (fNIRS). Neurons in
the brain communicate with each other via electrical sig-
nals, which eventually reach the brain surface. In the EEG
technique, brain activity is captured bymeasuring these elec-
trical signal using electrodes placed in the head scalp [4]. In
MEG, a functional neuroimaging technique, brain activity
is captured by recording brain magnetic fields using very
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sensitive magnetometers [5]. In the fMRI technique, brain
activity is measured through blood oxygenation and flow,
which increase in areas that are being used in mental pro-
cesses. For this technique, equipment of sizeable dimensions
and a scanner must be used [6]. In fNIRS, brain activity is
measured by identifying variations in the optical properties
in brain images using near-infrared light. [7]. Because of the
relative low cost and the portability of both EEG and fNIRS
equipment, these technologies can be used to gather cere-
bral information in a real usage scenario. EEG also measures
brain activity faster and for a longer duration than othermeth-
ods. Because of high temporal resolution, EEG is the most
frequently employed method in BCI systems [5, 8].

Controlling mobile robots or robotic arms using EEG-
based BCI technologies have been the subject of recent
research interest. In [9], a discussion of the current develop-
ments of BCI systems, including fundamental design aspects
for this type of system, was presented. Moreover, in [10, 11],
an analysis of brain-controlled mobile robots was presented
and a review of the overall systems and key techniques, as
well as of the issues regarding the evaluation of these robots,
was provided. On a related topic, Janet et al. [12] provided a
general overview of the manner in which biocontrol systems
can be designed, in particular, using EEG and electromyog-
raphy (EMG) signals.

This paper presents a review of EEG-based brain-
controlled mobile robots and robotic arms. It is organized as
follows. Section 2 presents an overview of EEG-based robot
control systems, as well as of several EEG feature extraction
and classification methods. In Sect. 3, various control sys-
tems for mobile robots are discussed, while Sect. 4 addresses
robotic arms. Section 5 presents evaluation and most com-
mon challenges facing EEG-based robot system. Section 6
provides themain conclusions of this study and the highlights
of future research directions.

2 EEG-based robot control

An EEG-based robot control system is a type of system
in which robots are governed using EEG signals collected
from the human brain. These systems can be divided into
three categories according to EEG-based brain signal mod-
els: event-related desynchronization/event-related synchro-
nization (ERD/ERS), P300 wave, and steady-state visually
evoked potential (SSVEP). The first category, ERD/ERS-
based BCIs, controls the robot using the EEG signals
recorded during the performance of mental tasks, e.g., motor
imagery (MI), mental arithmetic, andmental rotation [13]. In
general,MI is ametal task inwhich the subject performsmen-
talmotoric actionwithout performing actualmotoric activity.
The mu (8–13 Hz) and beta (14–30 Hz) rhythms of the sen-
sorimotor cortex are very important in the MI analysis [14].

During actual andMImovement of the hands (left and right),
the brain activation in the beta band (β-ERD) occurs predom-
inantly over the contralateral right and left motor areas, while
theβ-ERS is presented ipsilaterally [15]. Thepost-movement
ERS related to the action of stopping the motion can be also
created over the contralateralmotor areas [15]. In general, the
brain activity produced by MI is captured from the sensori-
motor cortex at EEG electrodes C3, C4, and CZ (according
to the international 10–20 system) (see Fig. 2). This type of
system may require a training time of many weeks, and the
accuracy of such systems is low. Since the accuracy of the
ERD/ERS-based BCI strategy is the lowest, the number of
command options is also the lowest. However, these systems
can be used to generate commands typically every 0.5–4.00 s
(see robot applications in Table 1).

The second and third categories of systems are the so-
called SSVEP-based and P300-based BCIs, respectively.
Both categories depend on external stimuli and do not require
training [16–19]. SSVEP is a steady-state physical response
to outside stimuli, which is periodic [20]. This type of brain
activity is generated at the primary visual cortex and can
be captured at the occipital EEG electrodes, including Oz,
O1, and O2 [21], and also at some surrounding electrodes.
On the basis of previous research studies, it had been con-
cluded that the range of SSVEP frequencies is from 1 Hz
to 90 Hz with clear resonance phenomena around 10, 20,
40, and 80 Hz [22]. Examples of the repetitive visual stimuli
used for evoking SSVEP are square flickers, checkerboards,
gratings, and light-emitting diodes (LEDs) [23]. In the case
of P300, brain activity is produced when a specific mental
action occurs or a specific stimulus acts on the sensory system
of the brain. After initiation of the target stimulus, the com-
ponents of P300 are detected in 300 ms and can be captured
in the midline centroparietal regions with electrodes Pz, Fz,
Cz, and Oz, and also some surrounding electrodes [24]. A
shorter time is required to issue commands using the SSVEP
than using the P300 approach, although SSVEP presents a
lower accuracy. Several studies related to EEG-based BCI
systems have been reported in the literature, focusing espe-
cially on SSVEP [25–27], P300 [28], and ERD/EDS [29, 33]
signals. Besides the three control signals mentioned so far,
there is also another control signal which is slow cortical
potentials (SCPs). SCPs are slow voltage shifts in the EEG
that last one to several seconds. SCPs are based on brain
signals with a frequency less than 1 Hz [34]. According to
our best knowledge, we did not find implementation of this
type of control signal in this field (mobile robots and robotic
arms) in the literature. This review focuses on the first three
control signals. Table 1 presents a comparison of these three
main types of EEG signals and the main references in robots.
Table 1 presents a comparison of these three main types of
EEG signals and the main references in robots.
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Table 1 Comparison of SSVEP,
P300, and ERD/ERS with
examples in robots

Category Stimulus Number of
choices

Accuracy Producing
command time

Training time References

ERD/ERS No Low (60–70%) 0.5–4 s Needed for
many weeks

[29–33,
35–61]

SSVEP Yes High (80–90%) 2–4 s Not needed [25–27, 62–69,
71–76]

P300 Yes High (90%) 10–20 s Not needed [28, 69, 77–81]

Fig. 1 Block diagram of an
EEG-based brain-controlled
robotics system

EEG signal

Signal
Acquisition

ClassificationFeature 
Extraction

Preprocessing

Control
Unit 

Motion 
commands 

Recent developments in signal processing and machine
learning methods have allowed computer systems to perform
more sophisticated tasks, including the analysis of EEG sig-
nals. EEG signals are usually decomposed into different EEG
sub-bands: delta (<4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (>30 Hz). A generic block dia-
gram of the EEG-based brain-controlled robotics system is
shown in Fig. 1. As shown in the figure, the system consists
of five basic stages: signal acquisition, preprocessing, feature
extraction, classification, and the control unit phase [82]. In
the signal acquisition stage, the brain signals are recorded by
means of specific electrodes and then sent to the preprocess-
ing stage for signal enhancement and noise reduction. In the
feature extraction stage, the discriminative characteristics of
the enhanced signal are generated, and the size of the data
sent to the classification stage is decreased. Finally, in the
classification and control unit stages, the produced features
are translated into commands and then sent to the device to
be controlled [9]. The following subsections discuss these
five stages in more detail.

2.1 Signal acquisition

As mentioned above, two methods of EEG signal acqui-
sition exist: invasive and noninvasive. We focus on the
noninvasive method on which all examples of EEG-based
brain-controlled robotics are based. In this method, raw
electrical signals are recorded through sensors (electrodes)
located on the scalp according to the international 10–20
system. In this standard system, the distance between adja-
cent pair of electrodes is either 10% or 20% of the scalp

diameter, as shown in Fig. 2 [83]. The electrodes should be
stable, low cost, and present low contact impedance. The
most widely used electrodes are made of silver/silver chlo-
ride (Ag/AgCl). However, gel is required to improve the
conductivity between these wet electrodes and the scalp, as
described, for instance, in [29, 33, 58, 84]. Dry electrodes,
for instance those produced by Emotiv Systems Inc. [85–87]
or NeuroSky Inc. [62, 88, 89], can be employed to avoid the
time consumption of the application of wet electrodes. Vari-
ous recording and data acquisition devices exist, which vary
in shape, electrode number, etc. The devices most frequently
used to capture EEG signals are Epoc, produced by Emo-
tiv Systems Inc., and gUSBamp and g.HIamp, produced by
g.tec medical engineering. Emotiv Systems Inc. provides a
device with 14 dry electrodes, whereas g.tec’s device has 256
electrodes to improve the spatial resolution of the acquired
signals. Other types of EEG signal recording devices and
electrodes are shown in Table 2, together with examples of
EEG-based brain-controlled robotics.

2.2 Preprocessing

Since brain pulses are very small, they must be amplified
before digitization. Furthermore, raw EEG signals may con-
tain noise having different sources: electric or electromag-
netic fields (e.g., the power line, the sensing and digitalization
process, or other devices), and so on. A preprocessing step
is therefore required for cleaning the signals. Frequency
domain filtering and spatial filtering are the main preprocess-
ingmethods applied in BCIs. For frequency domain filtering,
bandpass filters and notch filters are commonly used in EEG
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Fig. 2 10–20 international system [83]

preprocessing. In general, bandpass filtering methods are
used for removing noise and artifacts from the EEG signal
(for instance, see [33, 36, 48, 49, 90]), whereas notch filters
should be used to remove the noise generated by the power
line [15] (for instance, see references [28, 33, 82, 93]). Dis-
crete wavelet transform (DWT) may also be employed for
time–frequency domain filtering, as described in [94, 105].
Wavelet transform (WT) analyzes the characteristics of the
signal in the time and frequency domain by decomposing the
signal into several functions by a single function to generate
shifting and detailing.

Another method for preprocessing is using spatial filter.
Spatial filter is able to increase signal-to-noise ratio (SNR)
of the brain signal [106]. This is achieved by processing
the brain signal data of multiple channels; for instance, see
[59, 82, 101]. A simple spatial filtering method is Lapla-
cian filtering, in which a signal from an important channel
is multiplied by a factor; all the signals from surrounding
channels are then subtracted from it. Common average ref-
erence (CAR) is an additional spatial filtering method in
which the average value of all the channels is subtracted
from an important channel to render the EEG recording
nearly reference-free. A common spatial filter (CSP) algo-
rithm may be employed to produce a set of peak variance
spatial filters for the discrimination of two classes and to
reduce the number of channels used. Other types of spatial
filtering may be employed, including autocorrelation (AC),
canonical correlation analysis (CCA), independent compo-
nent analysis (ICA), minimum energy combination (MEC),
and principal component analysis (PCA). The blind source
separation (BSS) method was also used, as described in [29,
33]. Table 3 lists some of the preprocessing methods of dif-
ferent EEG paradigms and their application in robots. Most
of these preprocessing methods are very useful to increase
the robustness of the system. However, if these methods are

not designed properly in the BCI system, they might remove
also the useful information in the EEG signal. Also, every
method has advantages and disadvantages comparing with
other. For example, Laplacian filter is very simple and easy
to use but is not very robust. In other hand, more advanced
filtering method such as common spatial filter (CSP) is more
robust but need a greater number of EEG channels. More-
over, although CSP does not require a priori selection of
specific bands and knowledge of these bands, its performance
is greatly affected by the position of the EEG electrodes. Ref-
erence [107] has discussed in more detail about advantages
and disadvantages for several EEG preprocessing methods.

2.3 Feature extractionmethods

The goal of feature extraction is to transform the pre-
processed signal into a feature vector by highlighting its
important feature (i.e., eliminates redundant data from the
feature vector) [36].However, not all feature extractionmeth-
ods produce the desired result. It is therefore important to
choose the appropriate method to achieve this goal. Many
promising techniques are available for extracting features
from EEG signals, including Fourier transform (FT), WT,
common spatial pattern (CSP), and the logarithmic band
power method. In FT methods, mainly the power spectrum
density is analyzed. The Fourier transform types include
fast Fourier transform (FFT) and discrete Fourier trans-
form (DFT). FFT is frequently used in practical applications
because of its simplicity and short computation time as com-
pared to DFT. It has been concluded that the frequency
components of EEG signals vary as a function of time (i.e.,
the signal is nonstationary) [108]. For this reason,WT, which
supports a flexible time–frequency resolution, is preferable
to FT and thus frequently used to analyze EEG signals. A
common spatial filter is also frequently used in EEG anal-
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Table 2 Examples in robots of signal acquisition

Category Authors Electrodes / electrodes number (ground: G, reference: R, left earlobe:
A1, right earlobe: A2)

Sampling rate Company

ERD/ERS Tanaka et al. [36] C3, C4, P3, P4, O1, O2, Fz, F8, T3, T4, T5,T6, Fz, A (G) 1024 Hz –

Leeb et al. [30] Cz and Fz (G) 250 Hz g.tec

Galan et al. [42] 64 electrodes 512 Hz –

Choi et al. [29, 33] C3, C4, Cz, FC3, FC4, Fpz (G), A (R) 256 Hz g.tec

Tsui et al. [48, 90] C1, C2, C3, C4, Cz, A (G) 250 Hz g.tec

Barbosa et al. [37] F3, Fz, F4, C3, Cz, C4, P3, P4 1000 Hz DAQ

Dand. et al. [91] 27 elec. including C1, C2, C3, C4, C5, Cz, A ( R) 256 Hz g.tec

Chae et al. [84] 32 elec. including C3, C4, Cz, Fpz (G), A (R) 250 Hz Compumedics

Kilicarslan et al. [92] 64 elec. including FCz (R), AFz (G) 100 Hz Brain Products

Song et al. [93] C1, C2, C3, C4, C5, C6, CP3, CP4, FC3, FC4, A1, A2 256 Hz Thought Tech.

Varona-Moya et al. [59] C3, C4, Cz, F3, F4, T7, T8, P3, P4, Fpz ( G) 200 Hz Brain Products

Lee et al. [56] 16 elec. including C3, C4, Cz, Fpz (G), A (R) 512 Hz USBAmp, g.tec

Ron-Angevin et al [60] 10 electrodes, AFz (G), Fz (R) 200 Hz g.tec

Gao et al. [94] FC5, FC6, A1&A2 (R) 128 Hz Emotiv Epoc

Aljalal et al. [58] 64 electrodes including C3, C4, Cz, A1, A2 (G), Fz (R) 250 Hz g.tec

SSVEP Müller-Putz et al. [95] 5 electrodes including Fz (G) 256 Hz g.tec

Prueckl et al. [26, 63] O1, O2, Oz, POz, PO3, PO4, PO7, PO8, Fpz (G), A (R) 256 Hz g.tec

Dasgupta et al. [25] 8 electrodes including O1, O2 256 Hz g.tec

Ortner et al. [27] O1, O2, Oz, POz, PO3, PO4, PO7, PO8, Fpz (G), A (R) 256 Hz g.tec

Pfurtscheller et al. [96] O1, A2 (G) 256 Hz gBSamp, g.tec

Ortner et al. [97] O1, O2, Oz, POz, PO3, PO4, PO7, PO8, Fpz (G), A (R) 256 Hz g.tec

Horki et al. [98] 21 electrodes, A1 (R), A2 (G) 250 Hz g.BSamp, g.tec

Choi et al. [99] O1, O2, AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8 128 Hz Emotiv Epoc

Chu et al. [100] O1, O2, AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8 128 Hz Emotiv Epoc

Zhao et al. [69] Oz 1000 Hz Cerebus™

Gao et al. [94] O1, O2, AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8 128 Hz Emotiv Epoc

Chen et al. [75] O1, O2, Oz, P3, Pz, P4, PO3, PO4, T5, T6, (G: FPz, Fz), Cz (R) 250 Hz –

Shao et al. [76] 32 elec. including O1, O2, P7, P8 500 Hz Brain Products

P300 Pires et al. [28] Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz, Oz, AFz(G) 256 Hz gUSBamp,g.tec

Iturrate et al. [77] 16 elec. including FP1, FP2, C3, C4, Cz, Oz, FPz (G), A1 (R) 256 Hz gUSBamp,g.tec

Escolano et al. [78] FP1, FP2, F3, F4,T7, T8, C3, C2, C4, CP3, CP4, P3, P2, P4 Oz 256 Hz gUSBamp,g.tec

Escolano et al. [79, 101] 24 elec. including FP1, FP2, F3,T7, T8, C3,C4,Fz (R), A1 (R) 256 Hz gUSBamp,g.tec

Panicker et al. [102] Cz, C1, C2, Pz, P1, P2, Oz, O1, O2 256 Hz ANT-Neuro

Choi et al. [99] AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1, O2 128 Hz Emotiv Epoc

Zhao et al. [69] Pz, Fz„ Cz 1000 Hz Cerebus™

Li et al. [103] 32 electrodes, AFz (G), A1 & A2 (R) 1000 Hz Cerebus™

Zhang et al. [104] 30 electrodes including Fz, FCz, Cz, CPz, Pz, Oz 250 Hz Compumedics

Wang et al. [105] 30 electrodes including Fz, FCz, Cz, CPz, Pz, Oz 256 Hz Compumedics

yses because of its ability to provide a set of spatial filters
for decreasing the variance of one class while increasing it
for the other class and thus reducing the number of chan-
nels used to represent the EEG signals [109]. Logarithmic
band power is a method frequently used in EEG analysis
for estimating the power of EEG signals. The advantage of
this method is its simplicity (i.e., it involves only squaring,

averaging, and logarithm operations), which renders its use
preferable in real-time applications. In our previous study
[58], we combined the logarithmic band power method with
CSP to redistribute the features of two classes to achieve
easy classification. Several nonlinear methods exist for ana-
lyzing EEG signals, such as the largest Lyapunov exponent
(LLE), fractal dimension (FD), and several entropy functions.
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Table 3 Methods of EEG preprocessing and their application in robots

Category Authors Methods

ERD/ERS Tanaka et al. [36] 0.53–30 Hz bandpass filter, BSS

Leeb et al. [30] 0.5–30 Hz bandpass filter

Galan et al. [42] 1 Hz high-pass filter, CAR

Choi et al. [29, 33] 8-order, 35 &59 Hz low pass filters, 0.16 Hz high-pass filter,

Barbosa et al. [37] 8–30 Hz bandpass filter, 50 Hz notch filter, BSS

Tsui et al. [90] 11–14 Hz, 15–25 Hz & 15–30 Hz bandpass filters

Dand. et al. [91] 0.1–100 Hz bandpass filter

Chae et al. [84] 1–100 Hz bandpass filter, 55–56 Hz notch filter, Laplacian filter

Kilicarslan et al. [92] 2-order bandpass Butterworth filter, notch filter

Song et al. [93] 4-order Butterworth IIR filter, 50 Hz notch filter, Laplacian filter

Varona-Moya et al. [59] Several bandpass filters, Laplacian filter

Lee et al. [56] 14–19 Hz filtering, CAR filtering

Ron-Angevin et al [60] 5-order, 5–17 Hz Butterworth filter, Laplacian filter

Aljalal et al. [58] 5-order, 0.5–100 Hz, 8–34 Hz Butterworth filter, 60 Hz notch filter

SSVEP Müller-Putz et al. [95] 3–60 Hz bandpass filter, CAR filtering

Prueckl et al. [26, 63] 0.5–60 Hz bandpass filter, 50 Hz notch filter, Laplacian filter

Dasgupta et al. [25] 0.5–60 Hz bandpass filter, 50 Hz notch filter, 2 s segmentation

Ortner et al. [27] 0.5–100 Hz bandpass filter, 50 Hz notch filter

Ortner et al. [97] 0.5–30 Hz bandpass filter, 50 Hz notch filter

Choi et al. [99] 5-order, 4–50 Hz Butterworth bandpass filter

Chu et al. [100] 5-order, 2 Hz cutoff Butterworth filter, 50 Hz notch filter, CSP

Zhao et al. [69] 3–30 Hz bandpass filter, notch filter

Gao et al. [94] Discrete wavelet transform (DWT)

Chen et al. [75] Removing linear trends, notch filter

Shao et al. [76] Band pass filtering using WT

P300 Pires et al. [28] 4-order, 7 Hz low pass filter, 50 Hz notch filter, normalization

Iturrate et al. [77] 0.5–30 Hz bandpass filter, notch filter

Escolano et al. [79, 101] 0.5–30 Hz bandpass filter, notch filter

Panicker et al. [102] 3-order, 0.5–12 Hz Butterworth bandpass filter

Choi et al. [99] 1–20 Hz bandpass filter, down samples, spatial filter

Zhao et al. [69] 0.5–26 Hz bandpass filter, removing signal drift, down samples

Li et al. [103] 1–10 Hz bandpass filter

Zhang et al. [104] 0.5–100 Hz bandpass filter

Wang et al. [105] 0.5–32 Hz Butterworth bandpass filter, DWT

Nonlinear methods can be used to measure the complexity,
regularity, and statistic quantification of EEG signals. We
also proposed a method that combines features from differ-
ent feature extraction methods. However, a combination of
too many features may lead to redundancy, overfitting, and
an increase in the processing time. To avoid features with
redundant information, a feature selection or dimensionality
reduction method, such as the t test and analysis of variance,
may be needed before the classification step [36]. Table 4
summarizes the existing feature extraction methods for EEG
signals and their application in robots.

2.4 Classifications methods

After the feature extraction process, a classifier or multiple
classifiers should be implemented to classify the signal. Var-
ious machine learning methods are available for EEG data
classification, including linear and nonlinear classifiers. In
linear classifiers, unlike in nonlinear classifiers, it is not
necessary to adjust many parameters, and thus, this type
of classifier is more robust and less prone to overfitting.
However, there are some applications, especially those that
are complex or involve large data sets, in which nonlinear
classifiers produce better results, [114]. The most widely
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Table 4 Methods of EEG feature extraction and their application in
robots

Category Feature extraction methods References

ERD/ERS Fast Fourier transform (FFT) [59, 108]

Discrete wavelet transform
(DWT)

[37, 93, 106]

Logarithmic band power [30, 48, 49, 58, 90]

Common spatial pattern (CSP) [29, 33, 58, 93]

Common spatial frequency
subspace decomposition
(CSFSD)

[33]

Linear discriminant analysis
(LDA)

[32, 109]

Autoregressive model (AR) [84, 109, 110]

Principal component analysis
(PCA)

[108]

Estimating power spectral density
(PSD)

[56, 59, 60]

Others [59, 111, 113]

SSVEP Fast Fourier transform [69]

Welch periodogram with FFT [88]

Minimum energy approach (ME)
with FFT

[65, 89]

Ensemble empirical mode
decomposition

[64]

Canonical Correlation Analysis
(CCA)

[65, 75, 76]

P300 Principal component analysis
(PCA)

[113]

used methods for addressing the classification problem in
brain-controlled mobile robots include linear discriminant
analysis (LDA), support vector machine (SVM), artificial
neural network (ANN), k-nearest neighbor (KNN), and fuzzy
classifiers. LDA is awell-knownbinary classificationmethod
based on mean vectors and covariance matrices of feature
vectors for individual classes. It uses a hyperplane to distin-
guish between classes,minimizing the variancewithin a class
andmaximizing the variance between classes [115]. AnLDA
classifier is preferred because of its satisfactory performance
and low computational cost and because it does not require
extensive pretraining. However, because of its linearity, LDA
may yield poor results when handling large nonlinear EEG
data. This problem can be avoided by employing a suitable
kernel function [116]. SVMmethods also distinguish classes
by building a linear optimal hyperplane. For a given set of
training data, an SVM builds a model or hyperplane that
separates the patterns belonging to the different classes by
the widest possible margin [117]. When handling a non-
linear classification problem, SVMs use a kernel trick to
transform the original data (or feature) to another space to
facilitate the solution of the classification problem. LDA and

SVM were originally two-class classifiers. However, they
may also be employed to classify multiclass problems. This
can be achieved by either modifying the method or using the
“One Versus the Rest” strategy. In the latter method, each
class is separated from all other classes. For example, Chae
et al. [84] employed an adapted LDA method, QDA, to clas-
sify three mental tasks (involving the left hand, right hand,
and foot). In addition to LDA and SVMs, ANNs are widely
used as multiclass classifiers in the BCI field. An ANN is
an information processing system that simulates the process
of human cognition. It involves several interconnected com-
putational neural units. To produce the desired mapping, an
ANN must be trained to adjust the weights and biases of the
connections. Among several neural networks, the multilayer
perceptron (MLP) is the method most widely used for clas-
sification. The kernel of this feedforward artificial method is
the backpropagation (BP) algorithm, which includes output
layers, hidden layers, and input layers. The practical situa-
tion in question determines the number of hidden layers. In
the training process, the feature vectors should be applied
to the input of the network to adjust its variable parameters
and the weights and biases. Thus, the relationship between
the patterns of the inputs and outputs is captured. An ANN
classifier is rarely applied in SSVEP and P300. However, it
shows a satisfactory performance when applied in ERD/ERS
and provides a good accuracy level. In addition to the meth-
ods that have just been discussed, also fuzzy systems can
be used to distinguish between different patterns. These sys-
tems are able to discover patterns in data that are usually
difficult to detect. Fuzzy systems depend on the tolerance
of imprecision and uncertainty, to accomplish tractable and
robust solutions for classification [12]. In some applications,
the neural network is combined with fuzzy systems (ANFIS)
to obtain a new classifier as in [120]. Like other classifiers,
KNN can classify between two or more patterns. The princi-
ple underlying the algorithm of this classifier is that features
that represent different patterns will form different clusters
in the features space, while similar or convergent patterns
will form similar clusters. In order to distinguish a test fea-
ture vector, KNN considers k metric distances between the
test samples features and those of the nearest patterns. These
metric distances represent a measure of the matches between
the test feature vector and the feature vectors of each pattern
[9]. More details on this classifier can be found in [9, 121]. It
is worth noting that KNN is used rarely in BCI applications,
because this classifier is highly sensitive to the dimension of
the feature vector [122]. In addition, several other classifiers
can be used to classify EEG signals. Table 5 summarizes the
existing methods for EEG classification and some examples
in robots.
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Table 5 Methods of EEG classification and their application in robots

Category Classification methods References

ERD/ERS Artificial neural network
(ANN)

[37, 45, 51, 53, 54, 56,
85, 108, 118, 119]

Adaptive neural fuzzy
network (ANFN)

[45, 120]

Linear discriminant
analysis (LDA)

[32, 39, 40, 47–50, 52,
58, 59, 90, 96, 101,
123–130]

Quadratic discriminant
analysis (QDA)

[84]

Mahalanobis linear
distance (MLD)

[91]

Linear classifier (simple
threshold)

[30, 94, 131]

Statistical classifier [35, 38, 42–44, 132]

Support vector machine
(SVM)

[25, 29, 33, 41, 55, 57,
93, 133–136]

Recursive training
(Euclidean distance)

[36]

k-Nearest neighbor
(kNN)

[110]

Random forests (RF) [56]

SSVEP Artificial neural network
(ANN)

–

Linear discriminant
analysis (LDA)

[26, 27, 62, 100, 113]

Statistical classifier –

Support vector machine
(SVM)

[25]

Fuzzy logic [65]

PSD-based HSD [95–97]

Linear classifier (simple
threshold)

[75, 76, 94]

P300 Artificial neural network
(ANN)

–

Linear discriminant
analysis (LDA)

[77–80, 113]

Statistical classifier [28, 137, 138]

Support vector machine
(SVM)

[123–126, 134, 139, 140]

Linear classifier (simple
threshold)

[141]

2.5 Control unit

After the classification process, the control unit translates the
obtained categories into motion commands and then submits
them to a robot or an assistive device, such as a wheelchair,
robotic arm, or computer. Mobile robots are required to per-
form certain actions, including stop, turn to the left, turn to
the right, and walk forward. A robotic arm is required to
perform functions such as grasp (fingers opening/closing),

rotate wrist (left/right), drop, and lift. We discuss the com-
mands and the types of motions for both mobile robots and
robotics arms, together with some published examples, in the
next sections.

2.6 Software libraries

The processing of EEG signals, such as filtering, feature
extraction, and classification, can be implemented using
software. An open-source software system used for BCI
research is called BCI2000. This software suite has been
widely employed for data acquisition, stimulus presenta-
tion, andbrainmonitoring applications [142]. Several authors
employed BCI2000 in their studies, such as those reported
in [77, 79, 101, 143], to perform the tasks mentioned above.
A second open-source software, called OpenViBE [144], is
a software platform that can be employed as a generic real-
time EEG acquisition, processing, and visualization system,
as described in [69, 102, 145]. In addition, EEGLAB is a
MATLAB toolbox that is capable of processing EEG data
and other electrophysiological signals. ICA, time–frequency
analysis, artifact rejection, several modes of data visualiza-
tion, and other tasks can be implemented using this toolbox;
for instance, see [146]. In addition, other software programs
such as MATLAB [30, 147] or LabVIEW [93, 148] have
been used for the implementation of brain-controlled robots.

3 Mobile robot control

In this paper, the term mobile robot refers to a wheelchair,
humanoid robot, simulated or virtual robot, or any robot
that can be navigated in two dimensions. The main goal of
brain-controlled robot design is to enable a subject to con-
trol a mobile robot to reach a target safely and accurately
through brain signals. The BCI is the core technology used
to attain this goal. There are additional techniques that can be
used in conjunction with a BCI to achieve this goal, such as
robot intelligence techniques and hybrid control. Some tasks
allow a mobile robot to be navigated efficiently, including
peripheral sensing, localization, route planning, and collision
avoidance.Thesemaybe achievedbyusing robot intelligence
techniques. A combination of two (or more) BCI systems
may be employed to achieve hybrid control to perform a cer-
tain task through allowing control to be shared between the
BCI and an intelligent controller [77].

3.1 ERD/ERS-based approaches

In this section,wepresent a reviewof someexamples ofEEG-
controlled mobile robots for which the ERD/ERS approach
is implemented. As mentioned above, an ERD/ERS-based
BCI controls the robot using the EEG signals recorded dur-
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Table 6 Summary of ERD/ERS BCI-based mobile robot control examples

Author(s) No. of Elec. Features
extraction

Classification Mental
tasks/Actions

Robot type Performance

Tanaka et al. [36] 13 FFT Recursive training
(nearest
neighbor)

Left thinking right
thinking

Wheelchair Success rate 80%

Choi et al. [29, 33] 5 CSP and CSFSD SVMs Left: imagining
clenching the
left hand

Right: imagining
squeezing the
right hand.

Forward:
imagining
walking with
both feet

Stop: EMG

Wheelchair Success rate
90–95%

Leeb et al. [30] 1 Logarithmic band
power

Simple threshold Foot movement
imagination

Simulated robot
and virtual
environment

Accuracy 90%

Barbosa et al. [37] 8 DWT MLPNN —- Toruo mobile
robot

Classification rate
65%, successful
command rate
was 91%

Tsui et al. [48]
[49] [90]

5 Logarithmic band
power

Two LDAs Left thinking
Right thinking

Simulated robot
and virtual
environment

Accuracy 75%
(without online
training) and
85% (with
online training)

Dand. et al. [101] 27 —- MLD Left, right, go/stop Virtual
environment
using BCI2VR

Success rate
87.55%

Chae et al. [50] 32 AR & FDA LDA & QDA 3 mental tasks
(left, right, and
forward)
mapped onto
motion
commands

Nao humanoid
robot

Accuracy 75%

Song et al. [93] 10 Wavelet CSP SVM 2 mental tasks
(left and right)
mapped onto
motion
commands

BrookStone Rover
2.0

NA

Varona-Moya
et al. [59]

9 Estimating PSD LDA 2 mental states
(right-hand MI
and mental
relaxation)

Wheelchair NA

Lee et al. [56] 16 Estimating PSD RF Move: imagine
moving both
hands.

Relax: imagine
relaxing both
hands

Lower-limb
exoskeleton

NA

Ron-Angevin,
Ricardo et al
[60]

10 Estimating PSD LDA 2 mental tasks
(right-hand
motor imagery
or mental idle
state)

Wheelchair Accuracy above
83%

Aljalal et al. [58] 64 CSP +
Logarithmic
band power

LDA 2 mental tasks
(left and right
hand) mapped
onto four motion
commands

Simulated robot Successful
command rate of
80%
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Fig. 3 Examples of the brain-controlled mobile robots using ERD/ERS: a from [30], b from [56], and c from [59]

ing the performance of mental tasks, e.g., during MI, mental
arithmetic, andmental rotation. Table 6 summarizes previous
works on robot controls based on ERD/ERS approach. Fig-
ure 3 shows several selected examples of mobile robot from
the previous works ([30, 56, 59]). These examples are briefly
presented, and their signal acquisition, preprocessing, feature
extraction, and classification methods, as well as their output
commands, are analyzed. Because it would be very long to
discuss in detail about EEG analysis for each work, we sum-
marized them in Table 6 and we will focus on the important
finding for each work in the text. Millán et al. [35] built the
first brain-controlled mobile robot in a virtual environment
(VE). They employed several mental tasks, e.g., relaxation,
imaginary movement of the left and right hand, and cube
rotation. They found that mental control was a competitive
alternative to manual control for the same predefined task,
showing a performance ratio of 0.74.

Tanaka et al. [36] presented an investigation of an EEG-
based control implemented in an electric wheelchair. The
evaluation criterion was defined by the following statement:
“The electric wheelchair is able to reach the target when the
number ofwrong direction decisions is≤1 and the number of
correct direction decisions is 3.” After 20 control trials using
6 subjects, the mean success rate achieved was about 80%.
Leeb et al. [30] developed an asynchronousBCI that was able
to control a wheelchair in a VE. In their study, a participant
in a wheelchair was placed in a street VE together with 15
avatars. The objective was “to go” from one point to another
until the end of the streetwas reached. The subjectwas able to
complete this experimental trial well with an accuracy level
of up to 90%, on average. Tsui et al. [48, 49] proposed an
additional asynchronous online training BCI system. In their
studies, a simulated robot was used. The average accuracy of

two subjects without online training was 75%, while that of
subjects with online training was 85%.

Choi et al. [29, 33] developed a noninvasive BCI for con-
trolling a motorized wheelchair. Three healthy men were
trained bymeans of visual feedback provided every 0.125 s in
order to reduce the training duration and improve their perfor-
mance. To evaluate this method, experiments on controlling
bars and avoiding obstacles were conducted. Furthermore,
the results obtained using the feedback training method were
compared with those obtained in an imaginary movement
experiment without any visual feedback in which two differ-
ent subjects participated. In the bar control experiment, two
subjects obtained a success rate of 95.00%, while the third
achieved a success rate of 91.66%. In the obstacle avoid-
ance experiments, all three subjects obtained a success rate
of 90%, as much, and took almost same time to complete
the task as when a joystick control was used. A synchronous
operant conditioning BCI was developed by Barbosa et al.
[37] for the control of a mobile robot; the evaluation criterion
used was: “The occurrence of each class is evaluated after 5
trials, if a class reaches an occurrence rate of at least 50%,
then it is selected and translated to a motion.” The classi-
fication rate was 65%, while the successful command rate
was 91%. Dandan et al. [91] proposed a practical approach
for a BCI-based virtual wheelchair control system in 2D. In
the BCI2VR program, the simulated scenario size was set to
20 m2 and the speed of the wheelchair to 0.4 m/s, with a rota-
tional speed of 27 s per 360 degrees. Using these settings, the
mean time to reach a target located 10m from the subject was
58.6 s (5.9 s/m) using MI and 51.52 s (5.2 s/m) using physi-
cal movement. The average success rate for reaching a target
was at least 87.55%. The objective of Chae et al.’s study
was to develop an asynchronous EEG-based BCI system
for humanoid robot navigation. Five healthy male subjects
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were recruited for this study, and two classifiers were trained
offline until an accuracy level of at least 75% was accom-
plished. The speed of the robotwas 3.3 cm/s, with a rotational
speed of 48 s per 360degrees. The systemwas developedwith
the aimof optimizing theBCI and navigation performance. In
their study, Kilicarslan et al. [92] examined online control of
Rex (a hands-free, self-supporting, independently controlled,
robotic mobility device) by a paraplegic user using EEG sig-
nals to deliver go forward and stop action commands. Three
subjects participated in the study conducted byVarona-Moya
et al. [59]. The research team examined the possibility of
controlling a robotic wheelchair by using a BCI. They con-
cluded that, according to the results obtained, the BCI system
is an effective option for controlling a wheelchair. Lee et al.
[56] controlled a powered lower-limb exoskeleton using the
ERD-based EEG strategy. They developed a binary decoder
that was able to discriminate two mental tasks, move and
rest, which was employed in a cascaded manner to control
the exoskeleton in three directions. Ron-Angevin et al. [60]
developed a brain-controlled wheelchair based on the dis-
crimination of only two mental tasks. The control signals
used were sensorimotor rhythms modulated through a right-
hand MI task or mental idle state. The peculiarity of the
control system was that it was based on a serial auditory
interface that provided the user with four navigation com-
mands. In their study, nine subjects controlled a wheelchair
and achieved a medium accuracy level above 0.83.

We have also recently presented a study that focused on a
synchronous control system with an MI-based BCI for robot
navigation. In our paper [58], we proposed a new feature
extraction technique that uses common spatial pattern filter-
ing combined with band power to form feature vectors. LDA
was employed to classify two types of MI task (right and left
hand). In addition, we have developed a posture-dependent
control architecture (shown in Fig. 4a) that translates the
obtained MI into four robot motion commands: going for-
ward, turning left, turning right, and stopping. The EEGs
of eight healthy volunteer male subjects were recorded and
employed to navigate a simulated robot to a goal in a VE. For
a predefined task (shown in Fig. 4b), the developed BCI robot
control system achieved its task in 170 swith a collision num-
ber of 0.65, distance of 23.92 m, and successful command
rate of 80%. Although the performance of the complete sys-
tem varied between subjects, the robot always reached its
final position successfully.

3.2 SSVEP and P300 BCIs (synchronous BCIs)

This section presents a review of brain-controlled mobile
robots, the control ofwhich follows theSSVEPandP300BCI
strategies. Recall that both SSVEP and P300 BCIs depend
on external stimuli. Square flickers, checkerboards, gratings,
and light-emitting diode (LED) are examples of the repet-

itive visual stimuli that are used to evoke SSVEP [23]. In
the case of P300, brain activity is produced when specific
mental action occurs or a specific stimulus acts on the sen-
sory system of the brain [24]. Graser et al. applied an SSVEP
approach for designing a brain-controlledwheelchair. In their
study, the stimulus used was an LED panel with four differ-
ent diodes oscillating at 13, 14, 15, and 16 Hz. These diodes
represented turn to left, turn to right, go forward, and go
backward, respectively [93]. In the same context, Zhao et al.
presented an SSVEP-based experimental procedure to estab-
lish a brain-robot interaction system for humanoid robots
by integrating multiple software programs, such as Open-
ViBE, Choregraph, C++, and MATLAB. Figure 5 shows
the structure of their system [68]. The subject in the exper-
iment completed specific closed-loop robot control tasks
within different environments, i.e., walking through obsta-
cles and pushing a light switch and delivering a balloon to
the subject, via the visual stimuli of four different diodes
oscillating at 4.615, 12, 15, and 20 Hz on the user interface.
Shao et al. applied an SSVEP approach for designing Wall-
Crawling Cleaning Robot. In their study, the stimulus used
was four flicker pieces oscillating with different frequencies
at 6, 7.5, 8.57, and 10 Hz [76]. Other similar investigations
were reported in [25, 27, 62, 149]. Several researchers have
also investigated brain-controlled wheelchairs following a
P300-based BCI approach. To the best of the authors’ knowl-
edge, Rebsamen et al. were the first to propose a P300 BCI
system for wheelchair control [126].

Jing et al. presented a practical study in which the control
performance of SSVEP and P300-based models was com-
paratively evaluated using amind-controlled humanoid robot
platform (Fig. 6). The average accuracy rate achieved using
the 4-class SSVEP model was 90%, while the 6-class P300
model achieved a rate over 90.0%. The average success rates
achieved using the 4-class SSVEP and 6-class P300 models
were 90.3% and 91.3%, respectively. The average response
times of the 4-class SSVEP and 6-class P300 models were
3.65 s and 6.6 s, respectively. The average information trans-
fer rates (ITR) achieved by both 4-class SSVEP and 6-class
P300 models were 24.7 bits/m and 18.8 bits/m, respectively.
According to the results of the experiments, the authors con-
cluded that an SSVEP BCI achieves a faster response to the
subject’s mental activity, whereas a P300 BCI is appropriate
for a greater number of targets [69].

SSVEP and P300 BCIs require minimal training but can
provide a more stable performance and a higher accuracy
rate than ERD/ERS BCIs. However, SSVEP and P300 BCIs
rely on external stimulation, whereas ERD/ERS BCIs do
not. Therefore, the latter may appear to be more desir-
able because the user can focus on driving the robot rather
than on the stimuli [150]. Table 7 summarizes the motion
commands of mobile robot applications in the three BCI
categories, ERD/ERS, SSVEP, and P300. The table shows
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Fig. 4 a Developed posture-dependent control architecture, b the tracked path in one attempt from [58]

Fig. 5 System structure for
brain–robot interaction with a
humanoid robot from [68]

Fig. 6 Comparative study of
SSVEP- and P300-based models
for control of humanoid robots
from [69]

actions including stop, turn to the left, turn to the right, and
walk forward, and turn head left and right. As shown in the
table, the P300-based BCIs may include a large number of
motion commands, while the ERD/ERS-based BCIs include
a small number. In Table 1, it can be observed that the clas-
sification accuracy in the P300-based BCIs is high, which
allows these systems to lead robots in many directions. In
contrast, in the ERD/ERS-based BCIs, the signal generated
by the user’s MI is very small and contains a considerable

amount of noise. In this case, the classification accuracy is
low, which causes a reduction in the number of categories
that can be classified. However, the ERD/ERS-based BCIs
are the most widely used, because they do not require an
external stimulus, which may disturb users, as do the P300
and SSVEP-based BCIs.
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Table 7 Motion commands and their application in mobile robots

Category Motion commands Robot examples

ERD/ERS Turn left and right [36, 48, 49]

Turn left and right and go
forward

[29, 33, 46, 56, 85]

Go forward [30]

Turn left and right, and stop [31]

Turn left and right, and go
forward and backward

[57, 111]

Turn left and right, go forward
and stop

[37, 58, 112, 151]

Go forward, stop, turn left and
right, head left and right

[84]

Go forward, turn left, turn right,
go backward, and stop

[61]

SSVEP Turn left and right, go forward
and stop

[73, 152]

Turn left and right, and go
forward and backward

[65, 69, 71, 90, 153]

Turn left and right, and go
forward

[64]

Human face detection and
tracking

[154]

Move forward, stop, head left,
right, camera top or bottom,
object grasping and lifting

[72]

P300 Go forward and backward, turn
left and right

[155]

Stop + eight motion directions [28]

Go forward and backward, shift
left and right, turn left and
right

[69, 70]

Go forward, stand up, sit down,
wave hand, turn on/off the
system

[81]

3.3 Hybrid control and intelligent controllers

The examples of BCI systems discussed in the previous
sections, most of them, use only one EEG recording tech-
nique that is ERD/ERS, SSVEP, or P300 alone. They do
not combine between these methods and also with other
electrophysiological recording such as electrooculography
(EOG) (EOG is a technique for measuring potential in the
human eye and thus can be used for recording eye move-
ments). Moreover, they also did not use intelligent controller
or autonomous navigation system. In pure BCI approach, the
users are fully responsible for controlling the mobile robots
while in the hybrid approach, the system also has intelligent
control to automatically navigate the device by using several
sensors attached to the device such as laser sensor, sonar, and
camera [77]. The most important advantages of BCI sys-
tems that do not include an intelligent controller are their

Table 8 Hybrid systems and their application in brain-controlledmobile
robots

Hybrid system Robots examples

ERD/ERS + intelligent
controller

[35, 38, 42–45, 47, 50, 73, 127,
132, 159, 160]

SSVEP + intelligent controller [62]

P300 + intelligent controller [77–79, 101, 126, 173]

ERD/ERS + P300 + intelligent
controller

[123–125]

SSVEP + P300 + intelligent
controller

[113]

SSVEP + P300 [69, 174]

SSVEP + ERD/ERS [175]

ERD/ERS + P300 [168, 176]

ERD/ERS + SSVEP + P300 [99]

BCI + fNIRS [57, 167–172]

P300 + eye blinking +
intelligent controller

[105, 165]

low cost and low computational complexity. However, the
performance of such systems is not good, because it depends
heavily on the BCI system’s performance, which is slow and
uncertain. To improve the performance of the BCI system,
researchers proposed developing a hybrid BCI system, such
as described in [156–158]. A hybrid system may be a com-
bination of one BCI and a second system, which can be a
second BCI. In the case of shared control, the BCI system
collaborates with the intelligent controller to perform a cer-
tain task. The robot in this case is a semiautonomous robot,
which requires the user to issue only very limited high-level
commands. In a common scenario of shared control, the user
needs to send only one command to select a task type using
the BCI, and then, the rest of work is completed automat-
ically by the robot based on an intelligent controller. Leeb
et al. [159] showed the manner in which users can mentally
control a telepresence robot with a BCI to perform a navi-
gation task in daily environments. Carlson et al. [160] and
Millán et al. [42] demonstrated the control of an intelligent
wheelchair with a BCI that can navigate in a room by jointly
utilizing themental commandof the user and the environment
information. Table 8 shows some developed hybrid systems
and their application in brain-controlled robots.

Some researchers have combined one or more BCI sys-
tems with an autonomous system for controlling mobile
robots; for instance, see [35, 62, 77, 123]. In this approach,
the user and the intelligent controller exchange the driving
of the robot, according to a switching scenario. SSVEP and
P300 BCI systems offer a large number of choices, and the
user chooses the destination from a predefined list of these
choices. The intelligent controller is then responsible for tak-
ing the robot to the destination. Since the time required to
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generate a command in ERD/ERS and the SSVEP systems
is short, they can be used for issuing fast and urgent com-
mands, such as “stop.” A typical example of this scenario
is described in [123]. Indeed, Rebsamen et al. developed a
BCI system with an intelligent controller in which one of
nine destinations was selected using a P300 BCI system and
the intelligent controller was responsible for the automatic
navigation, in a well-known environment, to the destination.
In this example system, the user can stop the robot using
an ERD/ERS BCI. A similar study was presented in [161],
in which the user selected a destination using an MI- or
P300-based BCI. According to the determined destination,
the navigation system planned a short and safe path and navi-
gated thewheelchair to the destination.During themovement
of the wheelchair, the user could issue a stop command using
the BCI.

In another scenario of a hybrid system, the user is primarily
responsible for driving the robot most of the time, but the
intelligent controller is responsible for obstacle avoidance
[162, 163]. This scenario is particularly useful in unknown
environments. The systems developed in [149] and [164] are
good examples of this scenario. In the study reported in [149],
the user controlled the robot by means of MI in an unknown
environment. However, the collision and obstacle avoidance
were implemented using an automatic intelligent controller.
These two scenarios allow the robot to be controlled within
a switching protocol between the user and the controller.
A third scenario requires the user to manually switch the
control, a particular example of which is the robot system
developed by Geng et al. [50, 129]. In this example, turning
right or leftwas controlled only by the user imaginingmoving
the hand right and left, while going forward was controlled
by the autonomous system at different times via the user
imagining moving the feet.

Each scenario has various advantages and disadvan-
tages. In the second scenario, a user can freely control the
wheelchair’s direction. However, controlling a wheelchair
(or a robot) for a long distance would fatigue the user. In the
first scenario, the user needs to select only the destination
command and then he or she allows the navigation system
to steer the wheelchair automatically. This type of automatic
navigation system is very convenient.However, the user lacks
freedom and is limited to moving to the predefined destina-
tions. Dilok et al. [165] combined the two scenarios in one
system. The users who participated in this study were able to
make a selection from nine possible destination commands
in the automatic mode and from four directional commands
(forward, backward, turn left, and right) in the shared control
mode. The users selected the commands using the designed
P300 processing system. The wheelchair was steered to the
desired location by the implemented navigation system. The
safety of the user during wheelchair navigation was ensured
by the included obstacle detection and avoidance features. A

combinationofP300 and electrooculography (EOG) technol-
ogy was used as a hybrid BCW system. The user could fully
operate the system such as enabling P300 detection system,
mode shifting, and stop/cancelation command by perform-
ing a different consecutive blinks to generate eye blinking
patterns [165].

More recently, functional near-infrared spectroscopy
(fNIRS) has emerged as a suitable candidate for next-
generation BCIs. fNIRS measures the hemodynamic
response in a manner similar to functional magnetic reso-
nance imaging (fMRI), but by using miniaturized sensors
that can be used in field settings and even outdoors [166].
It also provides a balanced trade-off between temporal and
spatial resolution as compared to fMRI and EEG, Thus,
fNIRS presents unique opportunities for investigating new
approaches, mental tasks, information content, and signal
processing for the development of new BCIs [23]. Bat-
ula et al. presented the results of a four-class MI-based
online fNIRS-BCI for robot control. Thirteen participants
performed upper- and lower-limb MI tasks (left hand, right
hand, left foot, and right foot) that were mapped to four high-
level commands (turn left, turn right, move forward, and
move backward) to control the navigation of a simulated or
real robot (aDARwIn-OP humanoid robot). Batula et al. con-
cluded that the use of an fNIRS-BCI could be feasible with
sufficient subject training [167]. Other similar systems have
also been investigated for use in robot control [168–172].
In the study in [105], the authors combined EEG and EOG
signals to drive a TurtleBot robot. In this study, each subject
controlled the robot such that it walked along the track by
using EEG and EOG signals and then allowed the robot to
autonomously return to its starting position along the original
track.

In the area of vehicles, Tianwei et al. [73] developed a BCI
system based on brain signals to control an unmanned aerial
vehicle. The developed system includes two subsystems. The
first subsystem, the decision subsystem, relies on MI-based
EEG signals and is responsible for decisionmaking. The sec-
ond subsystem, a semiautonomous navigation subsystem, is
responsible for avoiding obstacles automatically and pro-
vides the first subsystem with possible directions. In this
experiment, the research team demonstrated the possibility
and effectiveness of controlling a vehicle using a BCI sys-
tem in conjunction with an intelligent controller. The system
proposed by Xin-an et al. [113] is based on using P300 and
SSVEP signals to control intelligent vehicles. The authors
suggested a system whereby the user can select the destina-
tion of the vehicles using a P300 BCI and confirmation using
an SSVEP BCI. Researchers remain interested in develop-
ing and improving hybrid systems, inwhich a combination of
either BCI systems or other systems is integrated. Despite the
significant improvement in the performance of hybrid BCI
systems, they are still not used in the real world. This would
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require the development of additional systems to ensure the
overall performance of brain-controlled mobile robots under
the limitations of the BCI system.

4 Robotic arms control

A robotic arm is a mechanical device having a certain num-
ber of degrees of freedom (DOF), the functions of which
are similar to that of a human arm. A robotic arm may ter-
minate in a robotic hand for performing any desired task,
such as grasping and moving objects. An important objec-
tive of BCIs is to allow the anthropomorphic movement of
a highly dexterous prosthetic limb or an exoskeleton as an
assistive device through translating the signals generated by
the patient’s mental tasks [131]. In [177], a review of the
recent achievements in motor control BCIs, in particular in
terms of kinematics decoding and motor control of localized
areas of the limb, was presented. By using BCIs, it will be
possible to restore hand functions to patients suffering from
hand problems by enabling them to perform tasks such as
moving left/right or handling objects using a robot system
[135]. Several studies have been conducted in which BCIs
utilizing ERD/ERS and SSVEP brain signals were used for
these purposes. Li et al. proposed a BCI system for perform-
ing themotion of a serialmanipulator in the entireworkspace.
A small-world neural network (SWNN) was used to classify
five brain states based on MI and the system featured shared
control. The control strategy used six 2-tuple commands to
achieve motion control of the manipulator in 3D Cartesian
space [121]. Pohlmeyer et al. employed a monkey to control
a robot arm to reach objects using a BCI. The monkey was
instructed to transfer the arm to one of two LED targets to
obtain food as reward [178]. The objective of the BCI system
developed by Elstob et al. is to open and close an industrial
hand by discovering the left or right MI [179].

As for themethods implemented in EEG-based robot con-
trol systems, different feature extraction and classification
techniques are required for methods to control a robotic arm.
The difference lies in the motion that an arm with different
DOFs is required to perform, according to the application.
The system described in [180] controlled a 1-DOF prosthetic
arm,while controlling a 7-DOF prosthetic armwas presented
in [75, 118]. Amulti-DOF robotic arm providesmoremotion
types, such asmoving in a 3D space and picking up or placing
objects. Table 9 shows a summary of examples of different
systems that have been published in the literature. A typical
example ofERD/ERS-basedBCIs is that proposed by Jianjun
et al. [131], who developed a brain-controlled 7-DOF robotic
arm. Another example is that developed by Wang et al. They
developed a BCI based on three-class MI: left/right hand
and foot motor imageries. The three classes were translated
to eight commands (“left,” “right,” “up,” “down,” “ahead,”

“aback,” “hold,” and “put”) for controlling a 5-DOF robotic
arm [181]. Úbeda et al. [182, 183] also employed ERD/ERS
to develop a brain-controlled planar arm in 2Dusing two con-
trol strategies, a hierarchical and a directional control of the
motion, and validated these strategies in the real world. In a
related study, a 9-DOF wheelchair-mounted robotic arm was
controlled using a P300 BCI by Palankar et al. In their study,
15 stimuli were included in the BCI to correspond to 15 com-
mands: 14 for the robot arm movements and 1 for the stop
command. The stop command was used to interpret the sub-
ject’s intent to drive thewheelchair along a route to a required
point [184]. Some examples that include systems based only
on ERD/ERS BCIs were reported in the literature [185].
Müller-Putz et al. [93] used an SSVEP BCI-based system to
implement the grasping functionality andwrist rotation (right
or left). During training, four healthy participants reached an
online classification accuracy between 44% and 88%. Con-
trolling the prosthetic hand asynchronously, the participants
reached a performance of 75.5 to 217.5 s to copy a series
of movements, whereas the fastest possible duration deter-
mined by the setup was 64 s. Chen et al. [75] developed an
SSVEP BCI-based system to control a 7-DOF robotic arm.
It was asked form 12 healthy subjects to complete a move-
grasp-lift task without user training. The subjects completed
the task with an average accuracy of 92.78%, resulting in a
15 commands/min transfer rate.

With the purpose of improving the performance of these
systems, several researchers developed hybrid BCI systems.
A hybrid system may be a combination of one BCI and a
second system, which can be a second BCI. For example,
the system developed by Pfurtscheller et al. [96] combined
ERD/ERS- and SSVEP-based BCIs. In this system, an ERS-
based BCI was used to actuate on the SSVEP-based orthosis
when necessary and to deactivate the LEDs in the resting
periods. Four out of the six subjects succeeded in operating
the self-paced hybrid BCI with a good performance (positive
prediction value PPVb>0.70). Úbeda et al. [129] combined a
BCIwith the use of the radio frequency identification (RFID)
technology in order to control a robotic arm performing pick
and place operations. In this system, the RFID system saves
the object information to assist the BCI system, which is
responsible for differentiating three mental tasks. Four vol-
unteers have successfully controlled the robot arm, and time
and accuracy have been measured. Another hybrid system
was developed by Chu et al. [100]. The functional electrical
stimulation (FES) system is triggered based on the SSVEP
classification results. The FES is controlled using an iterative
learning control approach in order to stimulate the relevant
muscles of the upper limbs, tracking the intended speed and
position.The authors of [100] concluded that the feasibility of
BCI integrated with upper extremity FES toward improved
function restoration for an individual with upper limb dis-
abilities, especially for patients with tetraplegia. The system
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developed in the study in [186] uses a combination of EEG
and EOG signals, while the system reported in [187] uses
EEG and fMRI. Qiang et al. recently developed a robotic arm
system that combines MI, EMG, and SSVEP for performing
a writing task. The MI-based BCI was used as a single-
pole double throw brain switch (SPDTBS). By combining
the SPDTBS with 4-class SSEVP-based BCI, the movement
of the robotic arm was controlled in 3D space. In addition,
the muscle artifact (EMG) of the “teeth clenching” condition
recorded from EEG signals was detected and employed as an
interrupter, which can initialize the SPDTBS statement. The
subjects who participated in the study succeeded in manipu-
lating the robotic arm to write the word “HI” [94].

As in brain-controlled mobile robots, intelligent con-
trollers have been significantly used in robotic arms. In this
type of hybrid system, the intelligent controller shares the
control of the prosthesis with the user to perform a specific
task. A particular example of this type is the robotic arm
system developed by Zhijun et al. [104]. In this example,
the subject is required to transmit only one intention com-
mand using the P300 system for one drinking task and the
autonomous robot completes the rest of the specific control
task, delivering the desired container to the mouth of the
subject and then replacing it in the original position. Another
example of a shared control system was described in [188].
The authors presented a hybrid EEG-based BCI system for
controlling a robot’s grasp. First, the objects in the scene are
recognized by computer vision using a Kinect system, while
SSVEP is responsible for selecting the target object. Second,
the shared control paradigm is responsible for the grasp task.
Xu et al. also developed a hybrid system to accomplish reach
and grasp tasks. In this system, shared control is applied to
control a robotic arm by aMI-basedBCI and computer vision
guidance. A subject, joining the experiment, was just asked
to perform different mental tasks (left and right movement)
to move the end point of the robotic arm to the area around
the target. Then, the robotic armwill independently grasp the
target [189].

Other types of EEG signals may be used to control a
robotic arm. In the study reported in [190], a system was
developed that can control a robotic arm using EEG signals
generated by facial expressions. The arm is designed such
that it makes four movements: flex and extend the elbow,
make, and release a fist. Each movement is controlled by one
facial expression, left smirk, right smirk, raise brow, and look
left/ right. The authors in [191] employed blinks and teeth
clenching for manipulation of a robotic arm in 3D to perform
a pick and place task. In another study reported in [192], the
authors developed a hybrid gaze-BCI system, which com-
bines an EEG signals-based BCI and an eye tracking system
to achieve intuitive and effective control of the robotic arm.

5 Evaluation and challenges

5.1 Evaluation

The main goal of the EEG-based robot control systems is to
allow disabled people to control a mobile robot or robotic
arms. By using mobile robot, disabled people are able to
move independently. They may also control robotic arms
to perform efficiently certain tasks, such as grasping and
carrying objects, by just using their brain signals. We can
divide the performance of EEG-based robot control into two
levels, BCI performance and complete system performance.
The performance of the BCI system is represented mainly in
terms of classification accuracy by measuring the effective-
ness of the BCI system in terms of differentiating between
the implemented mental tasks. On the other side, the com-
plete system performance is evaluated by the effectiveness
of EEG-based robot control systems in terms of performing
a specific task. In general, there is no standard metric for per-
formance evaluation of the complete system. However, most
authors used the success rate, such as those of [33, 36, 91],
and the completion time, such as those of [33, 90, 93], as
metrics to evaluate brain-controlled robot systems. The suc-
cess rate is a widely used task metric that quantifies the level
of achievement for the task. The completion time is the time
consumed to accomplish the task. Other metrics can be also
used to evaluate EEG-based brain-controlled mobile robots,
such as the number of collisions [33], especially in the case
of mobile robots. The training time and workload are also
widely used ergonomic metrics. In this case, the workload
is the measure of the mental effort required of the user to
perform a certain task using brain-controlled robot systems.
Moreover, cost should also be taken into account in this eval-
uation, as it is an indicator of the system’s practicality. In
general, in the evaluation of different brain-controlled robotic
arms systems, their high accuracy and the time they require
to perform various tasks, such as reaching a destination and
grasping, should be considered.

5.2 Challenges

In recent years, considerable research has been done on
the development of brain-controlled systems. However, the
development of such systems is still in the process of sci-
entific research so that the designers of these systems face
many challenges. We describe some of them.

• Classification accuracy The basic and most widely used
measure of the accuracy of the BCI system is called
the classification accuracy. The accuracy is calculated by
dividing the number of trials (one mental task) that were
correctly classified over the total number of trials. The
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classification accuracy of any BCI system is influenced by
many factors, such as the following.

• Non-stationarity This means continuous changes occur
in the frequency and amplitude of the EEG signal over
time, either within the recording period or between
recording sessions [194, 195]. The emotional state of the
participant may alsomake the EEG signal more volatile.

• Noise Unwanted signals from several sources signifi-
cantly affect the classification accuracy of a BCI system
andmay cause non-stationarity. The sources of the noise
include the power line and the sensing and digitalization
processes or may be alterations in the electrode place-
ment and the environment [196]. In addition, artifacts
originating in EMG and EOG [197] render the classifi-
cation process of EEG signals more difficult.

• Real time Because EEG-based robot control is a real-
timeapplication, it is necessary to optimally decrease the
time required to instruct the robot without significantly
affecting the output accuracy.

• Signal processingThe appropriate analysis and process-
ing (filtering, feature extraction, and classification) of
EEG signals can ensure an accurate BCI.

• Subjects The performance of brain-controlled robots
based on EEG is affected by the user’s condition, such
as his/her level of disability. Some studies have demon-
strated that a satisfactory performance rate of a BCI
system for normal participants may not be duplicated
for disabled participants [21, 198].

• Safety Among the commands used to navigate an EEG-
based mobile robot is the stop command. This stop
command has very important role in providing safety to
the user in the event of, for example, a robot’s collision
with an object. However, considerable research has shown
that the implementation of the stop command in EEG-
based mobile robot systems is inadequate, and thus, these
systems are unsafe and impractical for actual navigation
[199]. This is due to the inaccurate classification of the
idle and stop states. Therefore, designing a safe and accu-
rate EEG-based mobile robot system is one of the most
commonly faced challenges [200, 201].

• Environment Simulated, such as those described in [30,
48, 49], or realistic, such as those described in [29, 33, 84],
environments should be considered in the development of
brain-controlled robots. In addition, known or unknown
environments should be also considered.

• Time consumption An additional challenge is time con-
sumption, especially during user training and the calibra-
tion of classifiers [201]. During the first phase, the user
training period, the user is taught to handle the system and
to control brain feedback signals. In the second phase,
the classifiers are trained using the trained user’s sig-

nals. Moreover, an additional time-consuming factor is the
updating of the navigational system of a robot, especially
when the robot is controlled in an unknown environment.

• Portability and ease of use The recording of EEG signals
is executed by means of sensors (i.e., electrodes) installed
on a conventional cap that needs to be connected to a com-
puter via cables. Unlike in the case of dry sensors, such as
those developed by Emotiv Systems Inc., Quasar USA and
NeuroSky, a gel needs to be applied when moist sensors
are used in order to improve the conductivity. This causes
the user discomfort.

• Cost effectiveness A BCI robot system comprises several
components, including an EEG recording device, signal
amplifier device, computer, electric wheelchair with nav-
igation system, etc. The total system cost should not be
high so that it is accessible to those who need it.

6 Conclusions and future direction

Significant progress in brain-controlled robot systems has
been achieved in recent years, making them useful for dis-
abled people or in other applications. In this paper, we
presented a comprehensive review of the EEG-based brain-
controlled mobile robots and robotic arms systems that have
been developed. We first presented a comparison of SSVEP,
P300, and ERD/ERS BCI systems, together with examples
of their use in robots. Then, we presented and discussed
the techniques currently used in these systems, including
signal acquisition, preprocessing approaches, feature extrac-
tion techniques, and machine learning algorithms for EEG
classification, with examples of their use in robots. We
also presented and discussed recent developments in EEG-
based brain-controlledmobile robots and robotic arms, based
on ERD/ERS, SSVEP, P300, and hybrid systems. Output
motions of either EEG-based mobile robots or robotic arm
systems and evaluation issues were also discussed. Finally,
we presented and discussed some challenges that face the
developers of EEG-based brain-controlledmobile robots and
robotic arms systems.

Further research should be directed toward the develop-
ment of more robust and accurate brain-controlled mobile
robots and robotic arms systems. In fact, the identification of
new means of improving the BCI system performance and
thus enhancing the overall performance of robotic systems
is critical for making them usable in real-world applica-
tions. In our recent study [58], we employed a new feature
extraction technique that uses CSP filtering combined with
band power to form feature vectors for two types of MI
tasks (right hand and left hand). An important step in EEG
analysis is the preprocessing step, including filtering and arti-
fact removal. Further investigations are needed in the area
of EEG preprocessing. Another process for increasing the
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accuracy of brain-controlled mobile robots (or robotic arms)
systems comprises combining EEG with an additional sen-
sor modality such as MEG and electrocardiography (ECG).
Brain-controlled mobile robots (or robotic arms) systems
should also have an adaptive learning capability to improve
their performance over time. The systems should also have
robust posture-dependent control architecture that has the
ability to correct some classification errors.

A standardized performance evaluation method should be
established to evaluate and compare fairly the performance of
different systems. Finally, any newly proposed method must
be verified and tested intensively using the EEG signals from
the targeted population (with adequate samples) before it can
be used widely in the real life application.
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