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Abstract—Previous neuroimaging studies have reported that 
the ventral temporal cortex (VTC) processes visual stimuli and 
thereby establish visual categories, which can be detected in 
electrophysiological signals such as electrocorticography (ECoG). 
However, most of the studies are based on visual stimulation 
through a computer. Thus, the degree to which those categories 
can be generalized is unclear under real-world conditions. This 
study extends the findings of a previous experiment, which aimed 
in real-time detection of visual perception, and investigated 
whether neural face and kanji categories obtained by computer 
stimuli can be confirmed in a real-world scenario. The real-time 
decoder accuracy and latency of two patients with epilepsy 
revealed that real-world faces and kanji can be detected with 
79.9% and 28.4% accuracy, respectively, showing an average 
online detection latency of 447 ms with respect to presentation 
time. Hence, the VTC cortex elicits robust and similar responses 
to computer stimuli and real-world face, leading to a powerful 
brain-computer interface to track a person’s attention in a real-
world scenario.
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I. INTRODUCTION

Online evaluation of cortical processes related to visual 
perception could contribute to more powerful and versatile 
human-computer interaction. Especially the recognition of 
faces is an innate and very well developed ability of the human 
brain [1] that can serve as field of research to help 
understanding attention or intention mechanisms. Particular 
regions on the ventral temporal cortex (VTC) were found that 
play an important role in processing information specifically 
related to faces [2], but also other categories like words [3].
Most notably, regions on the fusiform gyrus, including the so 
called fusiform face area (FFA) [4] and the anterior VTC [5],
have been identified in functional magnetic resonance imaging 
(fMRI) studies. Electrophysiological markers related to face 
processing in electrocorticographic (ECoG) signals include 
face-specific evoked potentials [6] and broadband γ activity 
[7]. Several studies have presented decoding systems achieving 
discrimination performances of 90.4% for visual categories 

like presented faces and objects [8], and 96% for faces and 
houses [9]. However, most of these studies involved cued 
visual stimuli presented on a computer monitor with 
subsequent offline data processing. Recently, we presented an 
ECoG-based real-time face decoder that does not depend on 
artificial synchronization to stimulus presentation [10]. The 
system was calibrated with training data presented on a
computer monitor and validated using unseen natural stimuli in 
a real-world environment. This successful experiment supports 
the hypothesis that the medium of the stimulus (i.e., picture on 
a screen vs. real face) is in fact irrelevant for face-related 
cortical processing. However, since [10] was only a single-
subject study, we aim for more evidence by investigating 
further subjects to justify more general conclusions. To this 
end, here we extend and confirm the previous findings with 
another subject, whose implanted ECoG grids covered similar 
cortical locations on the VTC/FFA. The decoder was calibrated 
by pictures of faces and kanji-characters on a computer screen 
and validated by printed faces and kanji-characters as well as 
real-world faces. The decoder feedback was provided in real-
time and without synchronization to stimulus presentation. 

II. METHODS

A. Subjects 
Two patients with epilepsy (S1: 26y male aforementioned 

in [10]; S2: 22y male), undergoing surgical treatment at 
Asahikawa Medical University, volunteered to participate in 
this study. Each patient was temporarily implanted with 
subdural platinum electrodes to localize seizure foci prior to 
resective brain surgery. The electrodes over the ventral 
temporal cortex had a diameter of 1.5 mm with 5 mm spacing
and are highlighted in Fig. 1. The study was approved by the 
institutional review board of Asahikawa Medical University. 
Both subjects gave informed consent prior to the experiment.

B. Data Acquisition 
ECoG signals were recorded at the bedside with a DC-

coupled g.HIamp biosignal amplifier (g.tec medical 
European Union Eurostars project RAPIDMAPS 2020 (9273) and Horizon 2020 Graphene Flagship project Graphene Core1 (696656)), the Japanese government 
(No. 16H05434, JP15H01657 and 26670633). 
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Fig. 1. Brain models with ECoG locations (black and red balls) of the 
two subjects after co-registration of pre-operative MRI and post-operative 
computerized tomography (CT) scans. ECoG locations highlighted by the 
red balls refer to the time-frequency plots, showing standardized ECoG 
responses in z-scores to presented faces and kanji images.

Fig. 2. Signal processing pipeline for calibration (blue boxes) and online decoding (green boxes). Calibration: ECoG signals ࢞[݉] were HP and BP filtered 
and submitted to a CSP analysis, computing a set of spatial filters (࢝஼ௌ௉). Spatially filtered signals ࢞஼ௌ௉[݉] underwent variance estimation (VAR) and log-
transformation (LOG), resulting in a normalized ࢟஼ௌ௉[݊]. An LDA generated class-specific weights (࢝௅஽஺). Online Decoding: Same steps as for calibration, 
but without CSP and LDA. The linear classifier (࢝௅஽஺) weighted the features in ࢟஼ௌ௉[݊] and generated an LDA output score (ݍி,ݍ௄,ݍூ) for Face, Kanji and 
Idle. Finally, a Softmax function transformed the LDA output into complementary probabilities (݌ி஼, ,௄஼݌ .(ூ஼݌

engineering GmbH, Austria) after neuro-monitoring and prior 
to resective surgery. Data were digitized with 24-bit resolution 
at 1,200 Hz, synchronized with stimulus presentation for the 
calibration runs, and stored using the g.HIsys real-time 
processing library (g.tec medical engineering GmbH, Austria).

C. Experimental Procedure 
For calibration, subjects were asked to observe 120 stimuli 

of three types (40 stimuli each), namely, Face (colored and 
greys photos of faces), Kanji (images of kanji characters) and 
Idle (black screen) that were presented in randomized order 

with a presentation time of 400 ms each on the computer 
screen. After each stimulus a black screen was shown for a
randomized duration between 2.0 s and 3.3 s. Each subject 
performed two calibration runs, leading to a total number of
240 trials for calibration. After that, the subjects participated in 
a real-world asynchronous experiment, including multiple 
printed kanji characters and photos of faces on paper, a mirror
for the patients to see themselves, and a group of 2-4 persons to 
look at. After showing the printouts to the subjects and placing 
the mirror in front of them, the persons in the group 
successively appeared in front of the subject. A computer 
performed data processing and classification amongst Face, 
Kanji, and Idle in real time, and provided visual feedback in
the form of a schematic face, a schematic kanji character, or a 
black screen. The whole experiment, including the feedback 
monitor, was recorded by a video camera at a rate of 30 frames 
per second for later synchronization with the ECoG data. 

D. Decoder Calibration 
The design of the decoder has been introduced in a 

previous visual categorization study [1]. A preceding offline 
calibration is required to enable real-time decoding according 
to Fig. 2. Thus, ECoG signals ࢞[݉] were initially high-pass 
(HP) filtered (Butterworth IIR, 4th order) to remove DC drifts
for visual inspection. Then, a 110-140 Hz band-pass (BP) filter 
extracted broadband γ activity ࢞௙௜௟௧[݉] . Common spatial 
patterns (CSP) were computed from the filtered signal,
improving the signal-to-noise ratio and reducing feature space
dimensionality. Specifically, a set of three “one-versus-all” 
spatial filters was composed to create distinctive features for 
Face, Kanji and Idle. These filters were obtained within a 
window from 100 ms to 600 ms post-stimulus ECoG data. The
four filters that contributed most to the discrimination task of 
each paired condition were used for classification. Hence, 
twelve feature channels remained for classification, each 
extracted by a corresponding spatial filter ( ࢝஼ௌ௉,௝, ݆ ∈{1,2, … ,12}):

࢞஼ௌ௉,௝[݉] = ࢝஼ௌ௉,௝୘ ∙ ࢞௙௜௟௧[݉]
Next, the variance ࣌࢞಴ೄು,ೕ[݊] was estimated from moving 

windows (500 ms length, 15 ms step size) for each feature 
channel ࢞஼ௌ௉,௝[݉] . These signals were log-transformed, 
yielding the normalized broadband γ power ࢟஼ௌ௉[݊]. Finally, 
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the three-class classification problem was solved via linear 
discriminant analysis (LDA), where each class was tested 
against the aggregated data of the remaining classes. This 
finally completed the calibration, i.e., the class-specific weights ࢝௅஽஺,௜ with ݅ ∈ ,ܨ} ,ܭ {ܫ denoting the respective class label.

E. Real-Time Decoding 
For real-time decoding, the ECoG data were processed in

frames of 16 samples, resulting in a processing rate of 75 Hz. 
In each processing step, data were HP- and BP-filtered
according to Fig. 2, yielding ࢞௙௜௟௧[݉]. The calibrated spatial 
filters were applied according to Eq.(1) to get ࢞஼ௌ௉[݉] for 
subsequent variance estimation and log-transformation, 
yielding ࢟஼ௌ௉[݊]. Then, ࢟஼ௌ௉[݊] were weighted by ࢝௅஽஺,௜ ,
resulting in the three LDA output scores ௜ݍ for Face, Kanji and 
Idle:

௜ݍ  =  ࢝௅஽஺,௜୘ ∙ ࢟஼ௌ௉[݊]
Final output metric for decision making was the 

complementary probability that features belong to class i, 
which was derived from the LDA output by means of a 
Softmax function:

௜஼݌ = 1 − ௘೜೔∑ ௘೜೔೗∈{ಷ,಼,಺}   (3) 

The decision criteria was then defined as follows: select the 
class that corresponds to the lowest ݌௜஼  if it undershoots the 
confidence threshold ݌ < 0.05 , otherwise set the output to 
Idle.  

F. Decoding Performance Evaluation 
As the decoder asynchronously outputs the result, it is not 

aligned to the stimulus presentation. In fact, it shows a delayed 
output with respect to the stimulus presentation. This delay 
originates, on the one hand, from the sliding window of 500 ms 
for variance estimation, and on the other hand from the natural 
visual processing time of the brain. This systematic offset was 
compensated by shifting the classifier output sequence, such 
that classification accuracy reached its maximum. Furthermore, 
the decoder performance was computed with and without 
subsampling of processed variance windows to compensate for 
unbalanced class occurrence (i.e., Idle occurred more often 
than Face and Kanji). Subsampling was performed 50 times, 
whereby each time the decoder accuracy was obtained from 
equally balanced number of samples of Face, Kanji and Idle. 
Additionally, the significance values of all decoding accuracies 
were obtained after 1000-fold bootstrapping of class labels. 

III. RESULTS

Decoding accuracy and latency for single-trial detection of 
recognized faces and kanji characters were assessed after 
calibration, where CSP and LDA weights were obtained from 
run 1 and tested by run 2. Additionally, the decoding accuracy 
was assessed for real-world faces and printed kanji characters 

in a real-world scenario with target persons around the 
subjects. 

A. Decoder Validation 
The classification output matched the presentation 

sequence best after shifting the classifier output back by 
467 ms for S1 and 427 ms for S2. Spatial filters and classifier 
weights were obtained from the initial calibration run and then 
tested with the validation run. Table 1 and Table 2 show the 
decoder performance with and without subsampling, 
respectively. 

TABLE I. ACCURACY WITHOUT SUBSAMPLING

Subjects
Accuracy

Overall
(%)

Idle
(%)

Face
(%)

Kanji
(%)

Random
(%)

Sign.
p<

S1a 90.6 93.0 81.3 63.8 75.6 0.0005

S2a 92.7 92.9 98.3 83.1 73.6 0.0005
a. Class occurrence for S1 and S2: 87.8% Idle, 6.1% Face and 6.1% Kanji 

TABLE II. ACCURACY WITH SUBSAMPLING

Subjects
Accuracy

Overall
(%)

Random
(%)

Sign.
p<

S1 80.8 33.3 0.001

S2 92.4 33.3 0.001

B. Real-World Face Detection Performance 
The classification output was first synchronized with the 

stimulus presentation in the video tapes and then shifted by the 
decoder latencies obtained in the decoder validation (i.e., 
467 ms for S1 and 427 ms for S2). Table 3 and Table 4 show 
the decoder performance for real-world faces and printed kanji 
characters with and without subsampling, respectively. Time 
courses of the classifier outputs are shown in Fig. 3 together 
with the stimulus presentation times and exemplary 
photographs from the video tapes. 

TABLE III. ACCURACY WITHOUT SUBSAMPLING

Subjects
Accuracy

Overall
(%)

Idle
(%)

Face
(%)

Kanji
(%)

Random
(%)

Sign.
p<

S1b 82.8 84.7 72.4 52.9 69.7 0.0005

S2c 89.8 94.0 87.4 3.9 83.1 0.0005
b. Class occurrence for S1: 87.3% Idle, 7.4% Face and 5.3% Kanji 
c. Class occurrence for S2: 91.2% Idle, 4.4% Face and 4.4% Kanji 

TABLE IV. ACCURACY WITH SUBSAMPLING

Subjects
Accuracy

Overall
(%)

Random
(%)

Sign.
p<

S1 74.8 33.3 0.001

S2 61.3 33.3 0.001
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Fig. 3. Classification output –log(p) over time for Face (red) and Kanji (blue) in the real-world scenario. Small bars over the time courses indicate either 
Face (red bar) or Kanji (blue bar) stimuli. Dotted lines represent the significance border (p<0.05). Photographs show exemplary stimulus presentation events.

IV. DISCUSSION

The VTC has been shown to be responsible for visual 
categorization, including face processing, mainly by 
neuroimaging studies, investigating electrophysiologic evoked 
or hemodynamic (i.e. fMRI) responses to visual stimuli on a 
presentation monitor. However, it is unclear whether visual 
categories established by population-level neural responses to 
computer stimuli can be generalized to real-world scenarios. 
The current study addressed this issue, showing that 72.4-
87.4% of perceived real-world faces and 3.9-52.9% of printed 
kanji characters can be identified correctly. Hence, face 
detection was more accurate and turned out to be robust against 
paradigm changes. In fact, more electrodes on the VTC as 
shown in Fig. 1 responded to face stimuli than to kanji stimuli. 
Compared to the validation runs, the accuracy for the real-
world faces only reduced from 89.8% (S1: 81.3%; S2: 98.3%) 
to 79.9% (S1: 72.4%; S2: 87.4%) on average. This indicates 
that neural activity during face processing can be reproduced 
even in complex scenarios and confirms the specific 
contribution to the visual processing on the ventral stream [1].
In comparison, the accuracy for detection of printed kanji 
dropped from 73.5% (S1: 63.8%; S2: 83.1%) to 28.4% 
(S1: 52.9%; S2: 3.9%). Notably, the decoder demonstrated a 
comparable performance for printed kanji in S1, whereas it was 
not able to confirm the decoding performance in S2. One 
explanation could be the time between calibration/validation 
runs and the real-world scenario. While all runs were recorded 
within one day for S1, seven days passed between calibration 
and real-world recording for S2. Hence, the CSP for Kanji may 
have altered and thus impaired the decoder. Especially, since 
the broadband γ activity was less distributed over the VTC in 
Fig. 1, the decoder is more sensitive to signal changes in
individual ECoG channels and the activation topology in 
general. Another reason may be the bilateral electrode 
coverage in S1 compared to the right-sided coverage in S2, as 
the left fusiform gyrus is known to process visually presented 
words [3].  

V. CONCLUSION

Spontaneous face perception can be robustly detected in real-
time and works even across different types of stimuli, e.g., for 

untrained real-world faces. This can support future BCI 
applications with increased context awareness to track a 
person’s attention.
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