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Changes in climate and land cover are potential drivers of land surface phenology changes. Here, we investigate
whether subpixel percent tree cover (PTC) change is an important driver of trends in satellite derived vegetation
spring greenup date (GUD) across the Hulunbuir temperate forest-grassland ecotone in northeastern China. GUD
was estimated using the MODIS-derived enhanced vegetation index time series during 2001-2020 with a spatial
resolution of 500 m. To understand the influential mechanisms of PTC on GUD, we examined relationships
between the spatial variations in GUD and PTC at multiple spatio-temporal extents. Forested pixels with greater
PTC were found to have generally earlier GUDs for all forest types. The GUD of forests was also generally earlier
than that of grassland. On the other hand, we observed approximately 23.7% and 1.2% significantly earlier and
later trends in GUD across the region, respectively. Meanwhile, widespread increases in preseason land surface
temperature (LST) and PTC were detected. Both increases in LST and PTC contributed to the earlier GUD in the
forested region. Specifically, we found negative correlations (Spearman correlation coefficient -0.17 to -0.55)
between the change slopes of GUD and PTC in every forest and grassland type. The results highlight the
important impacts of subpixel PTC on GUD variations, and improve the understanding of ecosystem changes
under the effects of climate and human activities (e.g., afforestation) over the Hulunbuir temperate forest-
grassland ecotone.

1. Introduction observations capture vegetation dynamics within a landscape (Henebry

and de Beurs, 2013; Guan et al., 2014; Helman et al., 2018).

Changes in land surface phenology (LSP), which are derived from
satellite remote sensing time series, offer a critical perspective for un-
derstanding vegetation and landscape dynamics under environmental
changes over large scales (Reed et al., 2009; Henebry and de Beurs,
2013; Piao et al., 2019). In recent decades, many studies have reported
LSP changes and the drivers (e.g., Tucker et al., 2001; Jeong et al., 2011;
Jeganathan et al., 2014; Garonna et al., 2016). It has been well accepted
that changes in climate and land cover/vegetation structure are poten-
tial drivers of LSP changes (de Beurs and Henebry, 2004; White et al.,
2005; Jeganathan et al., 2014; Zhang et al., 2019), as satellite time series

* Corresponding author.

Although most LSP studies have focused on climate drivers, previous
studies have highlighted the influences of land cover or vegetation
structure on the spatio-temporal dynamics of LSP across diverse eco-
systems across spatial scales. In agricultural areas, de Beurs and
Henebry (2004) showed that LSP changes characterized by the growing
degree days model in Kazakhstan were affected by land use change
induced by the collapse of the Soviet Union. Changes in crop types and
agricultural management also contributed greatly to the temporal
variation in LSP in recent decades across the USA (Zhang et al., 2019;
Liang et al., 2021). With regard to savannas, the effects of tree cover and
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tree grass ratio on the spatial patterns of LSP have been observed (Ma
et al., 2013; Guan et al., 2014; Cho et al., 2017). For example, Cho et al.
(2017) revealed significant spatial differences in phenological metrics
among different tree cover levels across southern African savannas. Tree
cover has also been identified as an important factor affecting LSP in
some forested regions in the Northern Hemisphere (Jeganathan et al.,
2014; Misra et al., 2018; Wang et al., 2021). Jeganathan et al. (2014)
showed that an earlier start of growing season was associated with a
strong loss in fractional forest cover. Wang et al. (2021) reported that
the ratio of trees to vegetation impacted the spatio-temporal patterns of
LSP in New Mexico, USA. In addition, spring greenup date in shrublands
was found to be related to the percent of shrub and herbaceous vege-
tation cover (Peng et al., 2021).

The Hulunbuir forest-grassland ecotone located in northeastern
China is a typical mid-high latitude temperate ecotone. The ecotone has
multiple key ecosystem functions and services, such as hydrological
regulation and biodiversity conservation (Lv et al., 2012). Understand-
ing the drivers of LSP changes can improve the evaluation and moni-
toring of ecosystem functions and services for this region (Reed et al.,
2009). As an ecologically sensitive area, ongoing changes in land cover
or vegetation composition have been observed under various impacts of
natural and anthropogenic factors, such as climate variability, fires and
afforestation (Gao et al., 2009; Lv et al., 2012; Wang et al., 2013; Ma
et al., 2016; Mackenzie et al., 2021). For example, Gao et al. (2009)
reported a decrease in tree crown density and a shift toward
drought-tolerant understory vegetation in this region between 1988 and
2006. Specifically, large-scale forest management, for instance, tree
harvesting and tree planting, as well as cultivation activities, have led to
widespread land use and land cover changes, particularly tree cover
changes, in recent decades (Lv et al., 2012; Yu et al., 2015; Huang et al.,
2018). Tree cover changes were also observed by satellite data (Jia et al.,
2015; Chen et al., 2019). In the meanwhile, recent LSP studies revealed
earlier spring vegetation greenup over this region, and the climate
drivers were also illustrated (e.g., Hou et al., 2018; Wu et al., 2021).
However, to the best of our knowledge, the influences of tree cover on
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LSP changes across this ecotone are still unclear.

Here, we aim to investigate whether tree cover changes play an
important role in the changes in spring vegetation greenup date (GUD)
across the Hulunbuir forest-grassland ecotone during the last two de-
cades (2001-2020). We used Moderate Resolution Imaging Spectror-
adiometer (MODIS) time series to estimate GUD, and characterized
linear trends in GUD. Changes in tree cover and spring temperature were
also analyzed. We then analyzed how tree cover changes influence GUD
changes.

2. Data and methods
2.1. Study area

The study area is a forest-grassland ecotone in Hulunbuir, Inner
Mongolia, northeastern China (Fig. 1a). Located in the mid-high lati-
tudes of eastern Eurasia, this region has a temperate monsoon climate.
The region shows diverse land cover types along with a climate gradient
(Fig. 1b). The land cover map in Fig. 1b was obtained from the Coper-
nicus Global Land Service (CGLS) collection 3 land cover product (100 m
spatial resolution) for 2015 (Buchhorn et al., 2020; https://lcviewer.vit
0.be/2015). In terms of the leaf type of forests, the CGLS land cover
product includes six types, and each leaf type has closed and open
subtypes. For each leaf type, we combined the closed and open subtypes
to ensure a sufficient tree cover gradient to investigate the spatial re-
lationships between GUD and subpixel tree cover. Deciduous needleleaf,
deciduous broadleaf, and unknown leaf types account for more than
99% of the forests. Forests with other leaf types were therefore excluded
from our analysis. We projected the land cover map to a 500 m spatial
resolution using the resampling technique of the majority. Deciduous
needleleaf forest is the most widespread forest type, and is mainly
located in the north of the region. The majority of deciduous broadleaf
forest and cropland are distributed in the eastern and western sides of
the Greater Khingan Mountains. The spatial distribution of unknown
forest is fragmented. Most of the unknown forest are located in the
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Fig. 1. Land cover map with a 500 m spatial resolution of the Hulunbuir forest-grassland ecotone in northeastern China for 2015 derived from the Copernicus Global

Land Service (CGLS) collection 3 land cover product.
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transition areas among land cover types. Grassland and wetland mainly
exist in the western part of this ecotone. The change analysis on GUD
was performed for the major land cover types, including deciduous
needleleaf forest, deciduous broadleaf forest, unknown forest, grassland,
and cropland.

2.2. Datasets

2.2.1. MODIS surface reflectance data

We obtained the Terra/MODIS Collection 6 MOD09A1 8-day com-
posite reflectance data with a spatial resolution of 500 m (Vermote,
2015) for the 2001-2020 period from https://ladsweb.modaps.eosdis.
nasa.gov/. The enhanced vegetation index (EVI, Huete et al., 2002)
was selected for the estimation of GUD. In this mid-high latitude region,
seasonal snow cover dynamics can affect the seasonal EVI patterns
(Shabanov et al., 2002; Delbart et al., 2005). Thus, we also used the
normalized difference snow index (NDSI, Hall et al., 1995) to track snow
cover dynamics. We calculated the EVI and NDSI as follows:

EVI =25 %

PNIR — Pred 1
Puig 0% Prog — 7.5 % Py + 1

NDSI — Pgreen — Pswir @
Pgreen + Pswir

WNETe g, PNIR> Poies Pereens a0 psywir are the reflectance of red (band 1
of MOD09A1), near infrared (band 2), blue (band 3), green (band 4), and
shortwave infrared (band 6) bands, respectively.

2.2.2. Tree cover data

The annual tree cover data were provided by the MODIS MOD44B
Collection 6 vegetation continuous field product at 250 m spatial reso-
lution (Townshend et al., 2015). We obtained the MOD44B data during
2001-2020 from https://search.earthdata.nasa.gov/search. This prod-
uct uses both MODIS optical and thermal infrared bands as inputs, and
provides the annual subpixel percent tree cover (PTC, tree canopy height
> 5 m), non-tree vegetation, and bare area (Townshend et al., 2015;
DiMiceli et al., 2021). This product has been widely used to quantify
long-term changes in tree cover (e.g., Song et al., 2014; Chen et al.,
2019). We resampled the 250 m PTC to 500 m using bilinear
interpolation.

2.2.3. Land surface temperature data

We used land surface temperature (LST) derived from the Terra/
MODIS MOD11A2 Collection 6 product (Wan et al., 2015), which has an
8-day temporal interval and 1000 m spatial resolution, as the major
climate driver of GUD changes. The MOD11A2 data from 2001 to 2020
were obtained from https://ladsweb.modaps.eosdis.nasa.gov/. Many
studies have shown strong correlations between surface air temperature
and MODIS-derived LST across the globe and northeastern China (e.g.,
Janatian et al., 2017; Zhu et al., 2017; Yang et al., 2017). Furthermore,
strong spatio-temporal links between MODIS-derived LST and spring
phenology have been observed in diverse ecosystems (Zhang et al.,
2004; Hanes and Schwartz, 2011; Hou et al., 2018; Tomaszewska and
Henebry, 2020). The spatial resolution of the MOD11A2 LST product
allows to capture the spatial differences in temperature and its temporal
variations within small regions. The LST data were therefore selected to
attribute drivers of spring phenology in this mountainous
forest-grassland ecotone that exhibits spatially heterogeneous temper-
ature patterns. We identified and removed all poor quality observations
in the LST data using the quality assurance layer and filled the gaps in
the daytime and nighttime LST time series using linear interpolation
(Zhang et al., 2015). We then generated the average LST time series
based on the daytime and nighttime observations and resampled the
average LST to a 500 m resolution using bilinear interpolation.
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2.3. Estimation of GUD

We first identified and removed observations contaminated by
clouds and cloud shadows in the 8-day interval EVI time series using the
state quality assurance layer included in the MOD09A1 product. We
then identified observations with a NDSI value greater than 0.1 as snow.
This NDSI threshold was set according to Gladkova et al. (2012). We
replaced snow observations in the EVI time series using the 5th quantiles
of all clear observations in the current and next years following Gray
et al. (2019). Cloudy observations in the EVI time series were then filled
using linear interpolation. We finally modeled the EVI time series using
the Asymmetric Gaussians function fitting (Jonsson and Eklundh, 2002).
This fitting process was implemented in the TIMESAT 3.3 software
(Jonsson and Eklundh, 2004; Eklundh and Jonsson, 2017). Before per-
forming the Asymmetric Gaussians fitting, we selected the median
filtering to further reduce abnormal values in the EVI time series. The
spike value of the median filtering was set as 0.5. We fitted the upper
envelope of the EVI time series with an iteration times of 3 and adaption
strength of 2. GUD was estimated using the threshold of the 20% of the
seasonal EVI amplitude. Less than 0.01% of the pixels had more than one
growing cycles in one year, and these pixels were removed. The TIME-
SAT software may fail to extract the GUD of some pixels due to poor data
quality, and these pixels were not considered in the following analysis.
Furthermore, we also excluded pixels with GUD before day of year 90. In
this case, GUD was regarded as an abnormal value according to our prior
knowledge of the study region.

2.4. Statistical analysis

2.4.1. Relationships between GUD and subpixel PTC

To understand how subpixel PTC influences satellite observed GUD
in this forest-grassland ecotone, we examined the relationships between
the spatial patterns of GUD and PTC across spatial and temporal scales.
The Spearman rank correlation coefficients between the temporal mean
GUD and PTC for the 2001-2020 period were calculated across the
whole study region and several subregions for each forest type. For the
whole study region, the analysis was performed based on 5% random
samples across the region (de Beurs et al., 2015; Wang et al., 2021). We
selected four subregions with strong spatial variations in PTC, as shown
in Fig. 1b and Fig. S1. Subregions A, C, and D were selected for decid-
uous broadleaf forest and unknown forest, and subregion B for decidu-
ous needleleaf forest. Although subregion D also contains a large
proportion of deciduous needleleaf forest, this subregion was not
analyzed for deciduous needleleaf forest because its spatial variation in
PTC was small. Furthermore, the spatial differences in spring tempera-
ture also affect the spatial pattern of GUD. We also calculated the
Spearman rank partial correlation coefficient between the mean GUD
and PTC by controlling the spring mean LST (day of year 97-128). For a
spatial comparison, it is reasonable to use LST with the same period to
reflect which pixels were warmer than others.

In addition to the analysis of multiyear mean GUD and PTC, we also
analyzed the spatial relationship between GUD and PTC for each year to
further understand the uncertainties. Furthermore, the GUD of forests
and grassland was also compared for each year. If impacts of subpixel
PTC on GUD spatial variations were observed, then temporal changes in
PTC can be a potential driver of temporal changes in GUD in theory.

2.4.2. Temporal changes in GUD and the potential drivers

A variety of studies have demonstrated that temporal variation in
GUD is related to preseason temperature variation across the temperate
region of China (e.g., Piao et al., 2006; Chen et al., 2012). Here, we
calculated the preseason mean LST with a preseason length of 24 days (i.
e., three 8-day composite periods). For each pixel, the last 8-day com-
posite period of the preseason was determined by its multiyear mean
GUD (Liu et al., 2016). We also tested the preseason length of 32 days
and 40 days, and the Spearman correlation coefficients between the
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GUD and LST time series were similar to that of the preseason length of
24 days (Fig. S2).

We estimated linear changes in GUD, preseason mean LST, and PTC
during 2001-2020 using the Theil-Sen slope (Sen, 1968; Theil, 1992)
and tested the significance of change by the Mann-Kendall test (Mann,
1945). Specifically, grassland with a mean PTC during 2001-2020
smaller than 10% and cropland were excluded from the PTC change
analysis. Note that the land cover map (Fig. 1b) represents the dominant
land cover type within a 500 mx 500 m pixel; hence, grassland pixels
can also contain trees (i.e., mixed pixels) in this forest-grassland ecotone
with heterogeneous landscapes. The threshold of 10% was set to exclude
grassland pixels with very low tree cover throughout the study period,
and for these pixels PTC change may not be a driver of GUD changes. In
total, PTC change analysis was performed for 20.6% of the grassland
pixels.

To investigate the potential drivers of GUD changes, we classified
pixels with significant GUD trends into several types based on trend
combinations of preseason mean LST and PTC. Different types could
indicate different potential drivers of GUD trends. We further examined
the Spearman rank correlations between the change slopes (Theil-Sen
slopes) of GUD and PTC for each land cover type for 5% random pixels
across the whole study region and for three subregions. The three sub-
regions were used as examples to illustrate the influences of PTC
changes on GUD, and were delineated in areas showing a spatially
continuous GUD change type, i.e., significantly earlier GUD with only
significant increase in PTC.

3. Results
3.1. Spatial difference in GUD under different subpixel PTC levels

The spatial relationships between the mean GUD and PTC during
2001-2020 of deciduous broadleaf forest are provided in Fig. 2. A
negative correlation (r=—0.43) between GUD and PTC was found across
the whole study region (Fig. 2a, Table 1). Much stronger negative cor-
relations were revealed in the subregions. Moreover, negative correla-
tions were also found for all 20 years with different meteorological
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conditions, although the correlation coefficients were weak in some
years, especially for the whole study area and subregion A. For sub-
regions C and D, strong negative correlations (r<—0.5) were observed
for more than ten years. Negative correlations were also found in de-
ciduous needleleaf forest (Fig. 3) and unknown forest (Fig. 4). A positive
but very weak correlation (r<0.1) occurred in 2004 for deciduous nee-
dleleaf forest (Fig. 3d). Furthermore, most of the partial correlation
coefficients between GUD and PTC by controlling spring LST were
strongly negative (Table 1). Overall, the negative correlations between
GUD and PTC indicated that in the forested region, pixels with higher
PTC generally had earlier GUD. In addition, the GUDs of forests were
also earlier than that of grassland for most years (Fig. 5). The differences
in GUD between grassland and forests were more evident for the
grassland that is spatially adjacent to forests (Fig. S1).

3.2. Changes in GUD during 2001-2020

Changes in GUD across the Hulunbuir forest-grassland ecotone for
the period 2001-2020 are presented in Fig. 6a. Overall, approximately
23.7% of the region experienced significantly earlier trends in GUD (p <
0.05, Table 2). Deciduous broadleaf forest and unknown forest showed
the strongest mean change slopes. The spatial patterns of significantly
earlier GUD of grassland and deciduous broadleaf forest were spatially
clustered. For grassland, significantly earlier GUD mainly occurred in
the eastern part, which is adjacent to the forested region. Many grass-
land pixels showed GUD advancement by greater than 0.75 days/year.
Most of the significantly earlier GUD for deciduous broadleaf forest were
distributed in the northeastern part, with absolute rates of change
greater than 0.5 days/year. Significantly earlier GUD of deciduous
needleleaf forest was observed mainly in the central and northern re-
gions. Significantly later GUD were observed for only approximately
1.2% of the region, of which most were distributed in the western
grassland and eastern cropland regions.

3.3. Changes in preseason LST and PTC during 2001-2020

Fig. 6b presents the changes of the preseason LST. We observed
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Fig. 2. Relationship between the mean greenup date (GUD) and percent tree cover (PTC) during 2001-2020 and the Spearman correlation coefficient between GUD
and PTC for each year of deciduous broadleaf forest. (a) (b) Random samples selected from the whole region, (c) (d) subregion A, (e) (f) subregion C, and (g) (h)

subregion D. All correlation coefficients were statistically significant (p < 0.05).
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Table 1
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Correlations between the spatial variations of the mean greenup date (GUD) and percent tree cover (PTC) during 2001-2020. r, Spearman correlation coefficient; pr,
Spearman partial correlation coefficient by controlling the mean spring land surface temperature.

Forest type Random samples Subregion A Subregion B Subregion C Subregion D
r pr r pr r pr R pr r pr
Deciduous broadleaf forest -0.43 —0.62 —0.55 —0.59 - - -0.77 -0.77 —-0.81 —-0.82
Deciduous needleleaf forest —-0.36 —-0.39 - - —-0.50 —-0.61 - - - -
Unknown forest —0.31 —0.59 —0.58 —0.64 - - —0.81 —0.78 —0.81 —0.84
Note: all correlation coefficients were statistically significant (p < 0.05).
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needleleaf forest. (a) (b) Random samples selected from the whole region and (c) (d) subregion B. All correlation coefficients were statistically significant (p < 0.05).

significant increases in preseason LST for approximately 46.2% of the
region (111,204 km?). Most of the warming regions had a slope greater
than 0.1 °C/year. The strongest increase in spring temperature was
found in the central region, i.e., the forested region in the Greater
Khingan Mountains. A small area of significantly cooling preseason was
observed in the southeastern region.

The spatial distribution of PTC changes is presented in Fig. 6¢. In
total, a significant increase in PTC was observed for approximately
41.5% of the analyzed region. All land cover types showed large pro-
portions of significant PTC increase (Table 3). Among the land cover
types, unknown forest showed the greatest mean PTC increase, followed
by grassland and deciduous broadleaf forest. Strong tree cover increases
were mainly distributed in the west and northeast of the forested region.
Only about 2.4% of the region showed significantly decreased PTC. Most
of these PTC decreases occurred in deciduous needleleaf forest in the
northern region.

3.4. Influences of preseason LST and PTC on GUD temporal changes

Significantly earlier GUDs (p < 0.05) were classified into five types
according to the trend combinations of preseason LST and PTC (Fig. 7).

Areas with significantly later GUD trends were not considered because
they accounted for a very small proportion of the region. In total,
approximately 26.6% of the significantly earlier GUD corresponded to
only a significant increase in preseason LST (Type 1, Table 4). As
interannual variations in GUD generally showed negative correlations
with preseason LST in the forested region (Fig. S2), the increases in LST
were likely to be the major driver of earlier GUD for Type 1. With regard
to land cover types, Type 1 accounted for large proportions of the de-
ciduous broadleaf forest and deciduous needleleaf forest (Table 4). A
large patch of Type 1 was observed in the deciduous broadleaf forest in
the southeastern region. For the Type 2 case, both preseason LST and
PTC showed significant increases, and GUD changes may be driven by
both of the two factors. Increases in PTC may be the major driver of
earlier GUD for Type 3, which showed the greatest proportion (36.0% in
total) among the five types. Large proportions (>50%) of Type 3 were
found in unknown forest and grassland. Subregions I, II and III in Fig. 7
are typical regions with spatially continuous Type 3. For a stricter sig-
nificance level (a=0.01), we found the proportion of Type 3 was much
greater than that of Type 1 (Table S1). Overall, most significantly earlier
GUD were associated with significant increases in LST and/or PTC, and
approximately 18.0% showed non-significant trends in LST and PTC
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(Type 4). Other cases (Type 5) had a very small proportion.

The relationships between the change slopes of GUD and PTC for the
three subregions with spatially continuous Type 3 and the whole study
region further illustrate the role of PTC in advancing GUD (Fig. 8). As
expected, negative correlations between GUD and PTC slopes were
revealed for all land cover types in different subregions, after masking
out the pixels with Types 1 and 4 that were not likely to be affected by
PTC. Pixels with greater PTC increases generally had greater advances in
GUD. This phenomenon was more obvious in deciduous broadleaf forest
and unknown forest (Fig. 8).

4. Discussion
4.1. Spatial difference in GUD in relation to subpixel PTC

PTC of a pixel or landscape was observed to affect its GUD, i.e., pixels
with greater tree cover generally had earlier GUDs (Figs. 2-4). The
observed GUD and PTC relationships could be mainly explained by the
generally earlier GUD of tree species than that of herbaceous species
across this temperate forest-grassland ecotone. In this region, a 500 mx
500 m pixel in the transition zone of forest and grassland may be a
mosaic of patches of forest and grassland. Using a simulation method
with MODIS NDVI time series of temperate forest and cropland end-
members in northeastern China, Chen et al. (2018) illustrated that an
increase in the percentage of forest in a pixel leads to an advance in
GUD. In Chen et al. (2018), the forest endmember has an earlier GUD
and a greater seasonal NDVI amplitude than those of the cropland
endmember. In this study, the GUDs of forests were generally earlier
than that of grassland as shown in Fig. 5. Deciduous forests also have
greater seasonal EVI amplitude than grassland. Similar to the mixed
pixel effect of forest and cropland in Chen et al. (2018), it is reasonable
to infer that pixels with a greater percentage of tree canopy had greenup
that occurred earlier, especially in mosaic landscapes of forest and
grassland. According to these results, tree cover increases over time are
expected to induce a trend toward earlier GUD.

Uncertainties of the relationships between GUD and PTC may occur
within the forested region, where some understory species may turn
green earlier in spring than the overstory trees to use the light, i.e., the
phenological escape phenomena (Richardson and O’Keefe, 2009).
Earlier understory greenup has been reported in many temperate de-
ciduous forests in North America (e.g., Ahl et al., 2006; Richardson and
O’Keefe, 2009) and Europe (e.g., Berra et al., 2019; Calders et al., 2015;
Doktor et al., 2009; Pisek et al., 2015). In this forest-grassland ecotone,
the overstory canopy cover (i.e., tree canopy higher than 5 m) is
generally sparse. The mean PTC in 2001-2020 was mostly lower than
60% (Fig. S1b). Hence, the phenological escape phenomena might not
be obvious in major understory species across this region, and this needs
further investigation. Berra et al. (2019) also reported later understory
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Fig. 6. Changes in (a) GUD, (b) preseason mean land surface temperature (LST), and (c) PTC during 2001-2020 across the Hulunbuir forest-grassland ecotone.

Table 2
Statistics of GUD changes during 2001-2020 for different land cover types.
Land cover Significantly Significantly Mean Standard
type earlier GUD (%)  later GUD (%) Slope deviation of
(days/ slope
year)
Deciduous 33.1 <0.1 —0.41 0.17
broadleaf
forest
Deciduous 13.1 0.2 -0.25 0.22
needleleaf
forest
Unknown 37.2 0.1 —0.41 0.24
forest
Grassland 24.3 2.4 —0.02 0.90
Cropland 24.8 2.1 -0.33 0.47
Total 23.7 1.2 -0.21 0.61

Note: the significance level is «=0.05.

development in a sparse forest.

Other factors can also partially explain the uncertainties. For
example, the sensitivities of phenological metrics to fractional cover
change of different tree species may be different, as shown in Misra et al.
(2018). Furthermore, the scaling effects of mixed pixels can influence

Table 3

Statistics of PTC changes during 2001-2020 for different land cover types. For
grassland, the statistics were computed for only pixels with mean PTC during
2001-2020 greater than 10%.

Land cover Significant Significant Mean Slope  Standard
type increase (%) Decrease (%) (%/year) deviation of
slope
Deciduous 38.3 0.3 0.55 0.50
broadleaf
forest
Deciduous 34.0 4.6 0.36 0.50
needleleaf
forest
Unknown 57.2 0.5 0.70 0.51
forest
Grassland 60.5 0.8 0.60 0.47
Total 41.5 2.4 0.49 0.52

Note: the significance level is a=0.05.

the GUD and PTC relationships (Chen et al., 2018; Peng et al., 2017;
Zhang et al., 2017). Zhang et al. (2017) suggested that in a mixed pixel,
earlier greenup vegetation contributed disproportionately to the esti-
mated GUD. We analyzed the GUD and PTC relationships for each forest
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Fig. 7. Significantly earlier GUD with different trend combinations of presea-
son LST and PTC.

Table 4

Percentage of significantly earlier GUD (p < 0.05) with different trend combi-
nations of preseason LST and PTC for each land cover type. The description of
the types is provided in Fig. 7.

Land cover type Type 1 Type 2 Type 3 Type 4 Type 5
Deciduous broadleaf forest 35.1 20.4 24.7 19.8 0.0
Deciduous needleleaf forest 39.2 25.6 22.5 12.4 0.3
Unknown forest 14.7 18.8 50.5 16.0 0.0
Grassland 11.5 12.2 54.2 22.0 0.1
Total 26.6 19.3 36.0 18.0 0.1

type and for different subregions to reduce the uncertainties. And we
have shown the general influences of PTC on GUD (i.e., negative cor-
relation) from the perspective of spatial variation. Indeed, the influences
of PTC on GUD are the results of mixed pixels, and a quantitative
evaluation of the scaling effects across this ecotone is needed to further
understand the GUD and PTC relationships.

4.2. Trends in GUD and the drivers

We observed a significantly earlier GUD (p < 0.05) for approximately
23.7% of the Hulunbuir forest-grassland ecotone during 2001-2020
(Table 2). A large area of the significant trend of earlier GUD was found
in deciduous broadleaf forest and unknown forest. The spatial pattern of
GUD changes was generally similar to the results in previous studies
covering similar time periods (e.g., Hou et al., 2018; Wu et al., 2021).
However, differences in GUD slopes compared with previous studies
were also found, partially due to differences in the satellite datasets,
vegetation indices, and definitions of GUD (White et al., 2009).

It has been well accepted that an increase in spring temperature
generally causes an advance in the GUD of forests in northern mid-high
latitude regions (e.g., Tucker et al., 2001; Menzel et al., 2006; Jeong
et al., 2011). Hou et al. (2018) showed that increases in spring tem-
perature can lead to advances in vegetation greenup during 2001-2016
in northeastern China. In this ecotone, the interannual variations in GUD
for most forested pixels were negatively correlated with the preseason
mean LST (Fig. S2). Widespread increases in preseason mean LST were
observed during the study period (111,204 km?, Fig. 6b). This warming
spring could partially explain the earlier GUD. Many pixels with
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significantly earlier GUD were associated with increased LST (Fig. 7,
Table 4).

The forested region experienced an apparent PTC increase (Fig. 6¢).
A similar spatial pattern of PTC change was also observed by Chen et al.
(2019), who evaluated tree cover change in China using the MODIS
vegetation continuous field data of 2000-2002 and 2014-2016 at a
0.05° spatial resolution. For a longer period, Jia et al. (2015) analyzed
changes in fractional forest cover over Northeast China during
1982-2011. In Jia et al. (2015), the Global Inventory Modeling and
Mapping Studies (GIMMS3g) dataset was applied to calculate the sub-
pixel fractional forest cover. Widespread increases and decreases in
forest cover were found in Hulunbuir, and the observed forest cover
changes were generally not significantly correlated with variations in
either temperature or precipitation (Jia et al., 2015). In recent two de-
cades, the PTC increase across this forest-grassland ecotone may be
primarily explained by afforestation and young forest growth under
several ecosystem protection projects (Liu et al., 2008; Jia et al., 2015;
Chen et al., 2019), such as the Natural Forest Conservation Program (Liu
et al., 2008). As discussed in Section 4.1, PTC change can be a potential
driver of GUD change. A large proportion of pixels showing significantly
earlier GUD was associated with significantly increased PTC (Table 4).
The negative correlations between the change slopes of GUD and PTC
further confirmed the influences of increased PTC on the earlier GUD
(Fig. 8). It is worth noting that climate variations can affect young forest
growth, and therefore climate may also have indirect impacts on the
observed GUD changes. But in this study, we focus on the direct impacts
of climate (i.e., temperature) and tree growth on GUD changes. Overall,
our results highlight that in addition to the spring warming, the increase
in tree cover was also an important factor that contributed to the earlier
GUD across Hulunbuir in recent two decades.

For grassland with very low PTC, which account for most grassland
in the region, previous studies have illustrated the influences of spring
temperature and precipitation on GUD variations (e.g., Tang et al., 2015;
Ren et al., 2018; Fan et al., 2020). This study focused more on the effects
of tree cover change on GUD, and we therefore did not further investi-
gate the climate drivers of the GUD trend in grassland.

Our analysis highlights the importance of subpixel PTC change in the
earlier GUD over the Hulunbuir temperate forest-grassland ecotone.
However, we also observed some areas with tree cover increases but
exhibited small changes in GUD, which mainly occurred in deciduous
needleleaf forest. This suggests the complexities of LSP changes in
response to tree cover change or the influences of other climate or non-
climate factors on GUD. For example, fires and natural community
succession may also contribute to GUD changes, and may partially
explain the uncertainties of GUD drivers (Zhang et al., 2019; Tong et al.,
2019; Wu et al., 2021). Changes in the start of the growing season
induced by fire events across the Mongolian Plateau have been observed
by Wu et al. (2021). In addition, topography may also affect GUD and its
response to PTC, because topography, especially deep terrain, can lead
to strong differences in climatic conditions within a small region
(Hwang et al., 2011; An et al., 2018; Tomaszewska et al., 2020).

This study evaluated the qualitative relationship between changes in
GUD and tree cover and spring temperature. It is a challenge to disas-
semble the contribution of climate and non-climate factors to GUD
changes across a large region due to the complex mechanisms of
ecosystem changes. Besides the uncertainties in GUD and PTC re-
lationships, there are diverse phenological responses to climate varia-
tions among overstory and understory species and at different locations
(Tremblay and Larocque, 2001; Richardson and O’Keefe, 2009; Hassan
and Rahman, 2013). A simulation method of mixed pixels combined
with phenology models as well as machine learning algorithms may
improve the quantitative assessment in this region (Chen et al., 2018;
Wang et al., 2021).
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Fig. 8. Spearman correlation coefficients between the slopes of GUD and PTC for different land cover types in different regions. Pixels with Types 1 and 4 changes
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were masked out. Locations of subregions I, II and III are presented in Fig.7. All correlation coefficients were statistically significant (p < 0.05).

5. Conclusion

We characterized GUD changes over the Hulunbuir temperate forest-

LSP changes can enhance the understanding of ecosystem processes in

the region, which needs further investigation.

grassland ecotone in northeastern China from 2001 to 2020 under
changes in spring temperature and PTC. Spatial differences in GUD in
relation to variations in subpixel PTC were observed in the forested
region across spatiotemporal scales. Pixel with a greater PTC generally
had an earlier GUD, suggesting that PTC increases or decreases may lead
to temporal changes in satellite-derived coarse resolution GUDs in this
ecotone. With regard to the temporal changes, approximately 23.7% of
the region showed significantly earlier GUD trends, while only approx-
imately 1.2% showed a significant delay in GUD. Meanwhile, wide-
spread increases in preseason mean LST and PTC were observed. A
combination of trends in GUD, preseason LST, and PTC suggests that
both increases in preseason LST and GUD contributed to the earlier GUD
in the forested region. Our results highlight the impacts of a non-climate
factor (i.e., tree cover) on satellite-observed GUD changes at a coarse
spatial resolution across this forest-grassland ecotone. A quantitative
assessment of the contributions of changes in tree cover and climate to
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