
Z-1_{Pro} User Manual

Using this Manual – Legend

Important Tips Explanation

Revision History

Date	Document Version
2024.06.17	V1.0

Date	Document Version
2024.10.15	V1.1

Date	Document Version
2025.01.15	V1.2

Caution

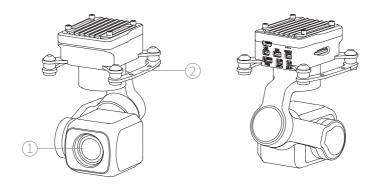
- 1. When not in use, store the pod in the package box. The recommended storage environment is a relative humidity less than 40% at a temperature of $20\pm5^{\circ}$ C. If the lenses fog up. The water vapor will usually dissipate after turning on the device for a while.
- 2. Do not place the product under direct sunlight, in areas with poor ventilation, or near a heat source such as a heater.
- 3. Do not frequently power on/off the product. After it is turned off, wait at least 30 seconds before turning back on, otherwise the product life will be affected.
- 4. Make sure the pod port and pod surface are free from any liquid before installation.
- 5. Make sure the pod is securely installed onto the aircraft.
- 6. Do not plug or unplug the microSD card during use.
- 7. Do not touch the surface of the camera lenses and keep it away from hard objects. As doing so may lead to blurred images and affect the imaging quality.
- 8. Clean the surface of the camera lenses with a soft, dry, clean cloth. Do not use alkaline detergents.
- 9. When not receiving valid carrier INS data, the yaw shaft of the pod will drift about 15 degrees per hour because of the earth rotation. To make sure the pod attitude corrects, it is necessary to transmit valid carrier INS data, usually the GNSS should be positioning.
- 10. WWhen its damping platform tilted over 45°, the pod will trigger protection mode and return to its neutral position. (except in FPV mode)

Catalog

Introduction	1
Synopsis	1
Characteristics	1
Overview	2
Ports Definition	3
Installation	4
Configuration & Upgrading	5
GCU Upgrading	5
Gimbal Upgrading	7
Real-time Video Playing	7
Appendix 1 Specifications	8
Appendix 2 MAVLink Configuration	10
ArduPilot	10
PX4	11
Appendix 3 MAVlink Communication Process	12
Appendix 4 Wiring Diagram of Connecting to Open Source Autopilot	13

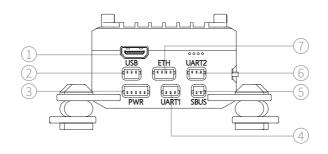
Introduction

Synopsis


The Z-1Pro Intelligent Black Light Full-Color Night Vision Micro Pod carries a star-light camera empowered with the AI-ISP full-color night vision imaging engine, which can provide a clear full-color night observation performance even in extremely low-light environments such as night time or confined spaces. The Z-1Pro has AI multi-object detection and tracking function. The pod can intelligently identify the persons and vehicles in the image, and constantly tracking one of them.

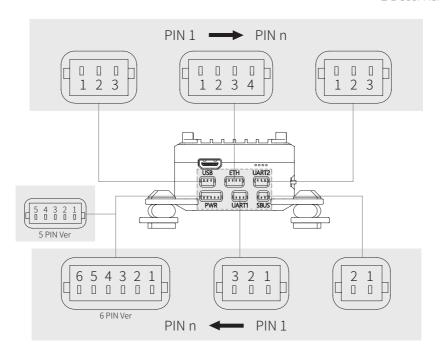
With a high accuracy 3-axis nonorthogonal gimbal, the Z-1Pro can be mounted whether downward or upward. With the Dragonfly software, users can watch the image from the camera and control the pod real-timely on a computer. With the customized QGC software, all the functions of the pod can be achieved in conjunction with an open source autopilot.

Characteristics


- 1/1.8-inch star-light CMOS and AI-ISP full-color night vision imaging technology empowerment.
- Features AI multi-object detection and tracking, which can constantly track one of the persons and vehicles intelligently identified in the image.
- Micro 3-axis nonorthogonal mechanical stabilized structure reducing the weight down to 100g.
- Supports network, UART and S.BUS control and compatible with both private protocol and MAVLink protocol. Support image transmission though network and HDMI.
- Thanks to the Dual-IMU complementary algorithms with IMU temperature control and carrier AHRS fusion, the gimbal provides a stabilization accuracy at $\pm 0.01^{\circ}$.
- Can be mounted onto multiple carriers, whether downward or upward.
- With the Dragonfly software, user can watch the image and control the pod without protocol ducking.
- Photos and videos can be downloaded online through the "Gallery" function of the Dragonfly software.
- With the customized QGC software, all the functions of the pod can be achieved in conjunction with an open source autopilot.
- Screen supports overlaying OSD information such as latitude, longitude and altitude. Image supports shooting point coordinate EXIF save.
- 10~26.4 VDC wide voltage input.

Overview

- 1. Fixed Camera 2. Damping Platform

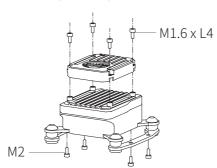

Ports Definition

- 1.Micro HDMI Port 2. USB Port
- 3. Power Port

- 4. UART1 Port
- 5. S.BUS Port
- 6. UART2 Port

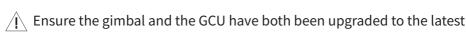
7. Network Port

Port	Description	Header	Pin	Definition
Micro HDMI Port	For video output	Micro HDMI	-	-
			1	GND
USB Port	Reserved	SM03B-SRSS-TB	2	USB_D+
				USB_D-
	For camera configuration,		1	ETH_Tx+
Network Port	camera upgrading, private	SM04B-SRSS-TB	2	ETH_Tx-
INELWOIK FOIL	protocol control and video	3MU4D-3K33-1D	3	ETH_Rx+
	output			ETH_Rx-
	For camera IP configuration,	SM03B-SRSS-TB	1	GND
UART2 Port	_		2	UART_Rx (0~3.3V)
	MAVLink protocol control		3	UART_Tx (0~3.3V)
C DLIC Dowt	For S.BUS Input. Compatible with S.BUS1 standard such		1	GND
as FASST and SFHSS, and S.BUS2 such as FASSTest		SM02B-SRSS-TB	2	S.BUS Out


Port	Description	Header	Pin	Definition
			1	GND
UART1 Port	For gimbal upgrading	SM03B-SRSS-TB	2	UART_Rx (0~3.3V)
			3	UART_Tx (0~3.3V)
			1	Dawarla
Power Port	Power in.		2	Power In
(5 PIN Ver)		SM05B-SRSS-TB	3	NC
(3 FIN VeI)			4	GND
			5	GND
	Operating Voltage:		1	Power In
Power Port (6 PIN Ver)	10~26.4VDC		2	Power III
		SM06B-SRSS-TB	3	GND
		2M00D-2K22-1D	4	GIVD
			5	Reserved
			6	ivesei ven

Installation

Use $4 \times M2$ screws to fix the damping platform to the carrier and reserve enough space for damping.


Do not hard-connect the pod to the carrier, and make sure that the pod does not come into contact with the carrier during use.

The pod heats while operating. Please ensure that the device is well cooled. The Micro-pod Cooling Kit can be used to assist with heat dissipation. Install the cooling kit on the top of the pod with 4 M1.6 x L4mm screws.

- The Micro-pod Cooling Kit is sold separately.
- The Micro-pod Cooling Kit needs to be powered separately, and the power supply range is 10~26.4VDC @0.5W.

Configuration & Upgrading

firmware before use. Otherwise, usage may be affected.

Ensure the diver of the config module is installed on the computer before configuration or upgrading.

Before configuration, the computer should be set to a static IP address, which is in the same network segment with the GCU (without IP address conflicts). The default IP address of the GCU is 192.168.144.108

Do not power off the device while upgrading. Restart the device once the upgrading is complete.

- 1. Connect the computer and ETH port with the Network Conversion Module. Power on the devices.
- 2. Run the Dragonfly display and control software to confirm that it is connected to the pod. Open the settings page.
- 3. When the settings are complete, click "Save".
- 4. Restart the pod to enable the configurations to take effect.


For instructions on Net Settings, CAMERA, S.BUS Setting, Calibration, Carrier, and Advance, please refer to the 《 Dragonfly Quick Start Guide 》 - Ribbon - Settings, or visit the www.allxianfei.com to get information in the Video Center.

GCU Upgrading

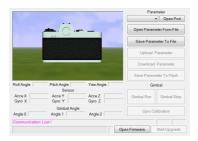

A Before performing the firmware upgrade, please make sure that the Dragonfly software is turned off.

- 1. Connect the computer and ETH port with the Network Conversion Module.

 Power on the devices.
- 2. Run the GCU Upgrade Tool.

3. Click the "Search Device" button and wait for the host computer search to complete.

4. After the search is complete, click "Connect" and wait for the connection to confirm that the connection is successful.



5. After the connection is successful, click "Upgrade" and the device will start upgrading. Wait for the software to prompt "upgrade successfully" to indicate that the upgrade is successful.

Gimbal Upgrading

- Ensure the driver of the Config Module is installed on the computer before upgrading.
- 1. Connect the upgrading port and the computer with the J1.0 Config Module. Power up the pod.
- 2. Run *GimbalConfig* software. Select the COM port corresponding to the Config Module. Click "Open Port" and confirm the software and the gimbal being connected.
- 3. Click "Open Firmware". Select the firmware file. Click "Start Upgrade" and wait for the upgrade to complete.
- For some brands of dual Type-C cables, there may be cases where the computer cannot recognize the Config Module. Please try replacing it with a Type-A to Type-C cable.

🔍 Visit the www.allxianfei.com for more information in the Video Center.

Real-time Video Playing

Example as camera IP address 192.168.144.108:

Stream address: rtsp://192.168.144.108

Appendix 1 Specifications

General		
Product Name	Z-1Pro	
Dimensions	59.2 x 48.4 x 80.2mm	
Weight	100g	
Operating Voltage	10 ~ 26.4VDC	
Power	6W (AVG) / 20W (Stall)	
Mounting	Downward / Upward	
Gimbal		
Gimbal Type	3-axis Nonorthogonal Mechani	cal Stabilization
Angular Accuracy	±0.01°	
Controllable Range	Pitch: -135° \sim +100°, Roll: \pm 50	°, Yaw: ±150°
Max Controllable Speed	±200°/s	
Fixed Camera		
Image Sensor	1/1.8-inch CMOS, Effective Pixe	ls: 4.08M
Lens	Actual Focal Length: 8.5mm (Equivalent focal length: 41.1mm) Aperture: f/1.0 HFOV: 57.1° VFOV: 30.4° DFOV: 66.3°	
Resolution	2688(H) x 1520(V)	
Pixel Size	2.9μm(H) x 1520(V)	
Equivalent Digital Zoom Rate	6x	
Object Detection Distance	EN62676-4:2015	Person ^[1] : 122m Light vehicle ^[2] : 161m Large vehicle ^[3] : 343m
Object Detection distance	Johnson Criteria	Person: 1466m Light vehicle: 4494m Large vehicle: 9575m
Object Identification Distance	EN62676-4:2015	Person: 25m Light vehicle: 32m Large vehicle: 69m
	Johnson Criteria	Person: 366m Light vehicle: 1124m Large vehicle: 2394m
Object Verification Distance	EN62676-4:2015	Person: 12m Light vehicle: 16m Large vehicle: 34m
	Johnson Criteria	Person: 183m Light vehicle: 562m Large vehicle: 1197m

Al Multi-object Detection & Tracking		
Object Size	16x16 ~ 128x128 px	
Object Identification Delay	< 40ms	
Tracking Speed	±32 px / field	
Tracking Deviation Refresh Rate	30Hz	
Tracking Deviation Output Delay	≤ 5ms	
Image & Video		
Image Format	JPEG	
Maximum Image Resolution	2688 x 1520	
EXIF	Shooting point coordinate	
Video Format	MP4	
Maximum Video Resolution	Stream: 1920 x 1080 @30fps Recording: 2560 x 1440 @30ps	
Stream Encode Format	H.264, H.265	
Stream Network Protocol	RTSP	
Storage		
Supported SD Cards	Supports a U3/V30 or above MicroSD card with a capacity of up to 256GB	
Environment		
Operating Temperature	-20°C∼ 50°C	
Storage Temperature	-40°C∼ 60°C	
Operating Humidity	≤ 85%RH (Non-condensing)	

- [1] Reference dimension of person: 1.8x0.5m. Critical dimension under Johnson criteria is 0.75m
- [2] Reference dimension of light vehicle: 4.2x1.8m. Critical dimension under Johnson criteria is 2.3m
- [3] Reference dimension of large vehicle: 6.0x4.0m. Critical dimension under Johnson criteria is 4.9m

Appendix 2 MAVLink Configuration

ArduPilot

SERIAL1	
SERIAL1_BAUD	115
SERIAL1_OPTIONS	1024
SERIAL1_PROTOCOL	2
SR1	
SR1_ADSB	0 Hz
SR1_EXIT_STAT	0 Hz
SR1_EXTRA1	0 Hz
SR1_EXTRA2	0 Hz
SR1_EXTRA3	0 Hz
SR1_PARAMS	0 Hz
SR1_POSITION	0 Hz
SR1_RAW_CTRL	0 Hz
SR1_RAW_SENS	0 Hz
SR1_RC_CHAN	0 Hz
MNT1	
MNT1_TYPE	4 (Gremsy) / 6 (SToRM32 Mavlink)
RC1	
RC1_OPTOPN	213 (MOUNT1_PITCH)
RC2	
RC2_OPTOPN	214 (MOUNT1_YAW)
RC3	
RC3_OPTOPN	163 (MOUNT1_LOCK)
CAM	
CAM_TRIGG_TYPE	3 (Mount)

- The MNT1_TYPE is recommended as 6. The MNT1_ROLL_MAX, MNT1_ ROLL_MIN, MNT1_PITCH_MAX, MNT1_PITCH_MIN, MNT1_YAW_MAX and MNT1_YAW_MIN will be configured automatically depend on data from the GCU. The angle limit should be set manual while the MNT1_ TYPE is 4.
- The RC1~RC3 are just examples, which can be defined according to actual situation.

PX4

MAVLink	
MAV_1_CONFIG	TELEM2
MAV_1_MODE	Custom / Gimbal
MAV_1_RATE	115200 B/s
Serial	
SER_TEL2_BAUD	115200 8N1
Mount	
MNT_MAIN_PITCH	AUX1
MNT_MAIN_YAW	AUX2
MNT_MODE_IN	Auto (RC and Mavlink Gimbal)
MNT_MODE_OUT	MAVLink gimbal protocol v2
Camera Setup	
Trigger mode	Distance based, on command (Survey mode)
Trigger interface	MAVLink (forward via MAV_CMD_IMAGE_START_
	CAPTURE)

- The MAV_1_MODE is recommended as Custom.
- The AUX1 and AUX2 are just examples, which can be defined according to actual situation. It should be configured in RC Map for further application.
- The trigger mode is just an example, which can be modified according to actual situation.

Appendix 3 MAVlink Communication Process

After receiving HeartBeat from the flight controller, and identifying SYSID and COMPID of the flight controller, GCU will operate as below:

- 1. GCU actively sends package MAVLINK_MSG_ID_HEARTBEAT 0 at a frequency of 2Hz.
- 2. GCU requests following packages in turn at a frequency of 1Hz. The flight controller fills these parameters into package MAVLINK_MSG_ID_COMMAND_LONG 76 until the request completing.:

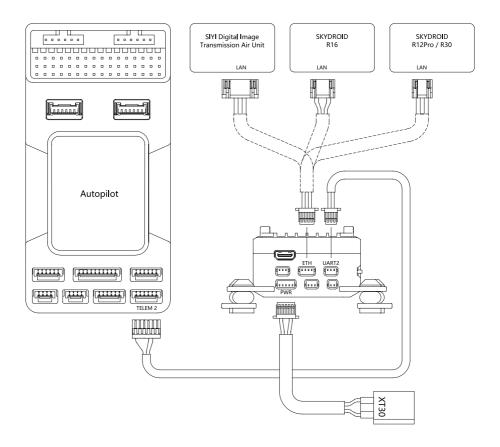
 MAVLINK_MSG_ID_EKF_STATUS_REPORT 193 (No this package for PX4);

 MAVLINK_MSG_ID_GLOBAL_POSITION_INT 33;

 MAVLINK_MSG_ID_SCALED_IMU 26;

 MAVLINK_MSG_ID_SYSTEM_TIME 2;

 MAVLINK_MSG_ID_RC_CHANNELS 65;


 MAVLINK_MSG_ID_CAMERA_TRIGGER 112 (No this package for APM);

 MAVLINK_MSG_ID_AUTOPILOT_STATE_FOR_GIMBAL_DEVICE 286;
- 3. GCU actively sends package MAVLINK_MSG_ID_GIMBAL_DEVICE_ ATTITUDE_STATUS 285 at a frequency of 100 Hz while the packages above being received and the pod being operational.

MAVLINK MSG ID GIMBAL DEVICE SET ATTITUDE 284 (No this package for APM);

4. Generally, the flight controller will request package *MAVLINK_MSG_ID_GIMBAL_DEVICE_INFORMATION 283*, which GCU does not send actively.

Appendix 4 Wiring Diagram of Connecting to Open Source Autopilot

