

Using this Manual – Legend

Revision History

Da	ate		Document Version	
2023.06.19		6.19	V1.0	
Da	ate		Document Version	
2023.10.16		0.16	V1.1	
1.		Installation: Add requirement o	f pod cooling.[P3]	
2.		Configuring & Upgrading Firmware:		
	2.1	Modify default IP address of GC	U	
		(192.168.1.121 → 192.168.144.1	.21)	
		and default IP address of came	ra	
		(192.168.1.108 → 192.168.144.1	.08).[P4]	
3.		Configuring & Upgrading Firmware - Camera Configuring & Firmware		
		Upgrading:		
	3.1	Modify address of camera confi	guring webpage (http://192.168.1.108/	
		cgi-bin/config → http://192.168	8.144.108/cgi-bin/config).[P4]	
	2.2			

- 3.2 Modify supported stream mode (RTSP & UDP \rightarrow RTSP).[P5]
- 3.3 Add explanation of camera firmware upgrading.[P6]
- 4. Add explanation of real-time video playing.[P6]
- 5. Appendix 1 Specifications:
 - 5.1 Add parameters of laser lighting module (Laser power and Beam Diameter).[P8]
 - 5.2 Modify supported stream network protocol (Delete UDP).[P8]
 - 5.3 Modify supported maximum SD card capacity (128GB \rightarrow 256GB).[P8]
- 6. Add Appendix 2: SEI Data Structure.[P9]

Date	Document Version
2024.03.12	V1.2

- 1. Appendix 1 Specifications: Modify parameters of object detection/ identification/verification distance of zoom camera.[P7]
- 2. Modify Appendix 2: SEI Data Structure.[P10]

Date	Document Version
2024.10.16	V1.3

Date	Document Version
2025.02.08	V1.4

Caution

- The D-80AI equipped with a laser lighting module, which is a Class 3B invisible laser. DO NOT exposure eyes to the beam within 12 meters or observe the beam by any optical instrument. DO NOT place any inflammable within 20 centimeters in front of the lighting module.
- 2. When not in use, store the D-80 in the package box. The recommended storage environment is a relative humidity less than 40% at a temperature of $20\pm5^{\circ}$ C. If the lenses fog up. The water vapor will usually dissipate after turning on the device for a while.
- 3. Do not place the product under direct sunlight, in areas with poor ventilation, or near a heat source such as a heater.
- 4. Do not frequently power on/off the product. After it is turned off, wait at least 30 seconds before turning back on, otherwise the product life will be affected.
- 5. Make sure the pod port and pod surface are free from any liquid before installation.
- 6. Make sure the pod is securely installed onto the aircraft, the microSD card slot cover is clean and firmly in place.
- 7. Make sure the pod surface is dry before opening the microSD card slot cover.
- 8. Do not plug or unplug the microSD card during use.
- 9. Do not touch the surface of the camera lenses and keep it away from hard objects. As doing so may lead to blurred images and affect the imaging quality.
- 10. Clean the surface of the camera lenses with a soft, dry, clean cloth. Do not use alkaline detergents.
- 11. When not receiving valid carrier INS data, the yaw shaft of the pod will drift about 15 degrees per hour because of the earth rotation. To make sure the pod attitude corrects, it is necessary to transmit valid carrier INS data, usually the GNSS should be positioning.
- 12. When its damping platform tilted over 45°, the pod will trigger protection mode and return to its neutral position. (except in FPV mode)

Catalog

Introduction	1
Synopsis	1
Characteristics	1
Overview	2
Installation	3
Configuring & Upgrading Firmware	4
GCU Upgrading	5
Gimbal Upgrading	6
Real-time Video Playing	6
Appendix 1 Dimensions	7
Appendix 2 SEI Data Structure	8
Appendix 3 MAVLink Configuration	9
ArduPilot	9
PX4	10
Appendix 4 MAVlink Communication Process	11

Introduction

Synopsis

The D-80_{AI} equips with a high-accuracy 3-axis nonorthogonal gimbal, a wide-angle camera and a 30x zoom camera. User can quickly switch to a highly magnified zoom camera view after recognizing a target in a wide camera view. Thanks to the laser lighting module, the D-80_{AI} can provide a clear image even in complete dark environments.

The D-80_{Al} have Al multi-object detection and tracking function. The gimble camera can intelligently identify the persons and vehicles in the image, and constantly track one of them.

The D-80AI can be mounted tool-lessly onto multiple carriers, whether downward or upward. With the GCU and the Dragonfly software, user can watch the image from the camera and control the pod real-timely on a computer.

Characteristics

- Features AI multi-object detection and tracking, which can constantly track one of the persons and vehicles intelligently identified in the image.
- Combination of wide-angle camera and 30x zoom camera, which can quickly switch between overall and detailed view.
- Laser lighting module ensures the cameras getting a clear image even in complete darkness.
- Low-profile spherical shape and 3-axis nonorthogonal mechanical stabilized structure, minimize the gyration radius and the wind resistance of the pod. The D-80_{Al} is able to spin continually around its yaw axis.
- With the GCU, the D-80AI supports network, UART and S.BUS control. The GCU supports both private protocol and MAVlink protocol.
- Thanks to the Dual-IMU complementary algorithms with IMU temperature control and carrier AHRS fusion, the D-80AI provides a stabilization accuracy at $\pm 0.01^{\circ}$.
- Can be mounted onto multiple carriers, whether downward or upward.
- With the GCU and the Dragonfly software, user can watch the image and control the pod without protocol ducking.
- Screen supports overlaying OSD information such as latitude, longitude and altitude. Image supports shooting point coordinate EXIF save.Video stream supports SEI stacking.
- 14~53 VDC wide voltage input.

Overview

- 1. Damping Platform
- 3. Zoom Camera
- 5. Laser Lighting Module
- 7. Control Port

- 2. Heatsinkz
- 4. Wide Camera
- 6. Upgrade Port
- 8. MicroSD Card Slot

Installation

- 1. Remove the control port protector.
- 2. Align and insert the 4 pins into the locating holes of the mount platform. Press down the lock catch to fix the pod. The pod can be also fixed with screws through the holes on the damping platform.
- 3. Plug the pod control cable into the control port and install the port protector back.

- While upward mounted or mounted at carriers with large vibration or impact, the pod should be fixed with screws nor the quick-release locks.
- angle Gently plug or unplug the cable. Avoid hardly pull the cable.
- Avoid squash the cable while installing the port protector.
- Ensure the microSD card slot cover is firmly in place to prevent dust or moisture entering during usage or storage.
- $m \dot{I}$ The pod heats while operating. Please ensure the device good cooling.
 - Do not hard-connect the pod to the carrier , and make sure that the pod does not come into contact with the carrier during use.
- **Q** The MicroSD card should be configured as HDD-FAT32 mode.

Configuring & Upgrading Firmware

/ Ensure the gimbal and the GCU have both been upgraded to the latest firmware before use. Otherwise, usage may be affected.

 $/\uparrow$ Ensure the diver of the config module is installed on the computer before configuring or upgrading the firmware.

/! Before configuring, the computer should be set to a static IP address, which is in the same network segment with the GCU and the camera (without IP address conflicts). The default IP address of the GCU and the camera are 192.168.144.121 and 192.168.144.108.

Do not power off the device while upgrading the firmware. Restart the device once firmware upgrade is complete.

- 1. Connect the computer and ETH port with the Network Conversion Module. Power on the devices.
- 2. Run the Dragonfly display and control software to confirm that it is connected to the pod. Open the settings page.
- 3. When the settings are complete, click "Save".
- 4. Restart the pod to enable the configurations to take effect.

Q For instructions on Net Settings, CAMERA, S.BUS Setting, Calibration, Carrier, and Advance, please refer to the 《 Dragonfly Quick Start Guide » - Ribbon - Settings, or visit the www.allxianfei.com to get information in the Video Center.

GCU Upgrading

- 1. Connect the computer and UART port of the GCU with the config module. Power on the devices.
- 2. Run FreeFlightIAP software. Choose the COM port corresponding to the config module.
- 3. Click "browse", choose the firmware file, click "download" and wait for the upgrading complete.

Q→ For more information, please refer to the 《 GCU User Manual 》, or log in to the www.allxianfei.com to obtain information in the Video Center.

Gimbal Upgrading

- 1. Connect the pod and the GCU with the pod control cable. Connect the computer and the gimbal upgrade port with the config module. Power on the devices.
- Run GimbalConfig software. Choose the COM port corresponding to the config module. Click "Open Firmware", choose the firmware file, click "Start Upgrade" and wait for the upgrading complete.
- For some brands of dual Type-C cables, there may be cases where the computer cannot recognize the Config Module. Please try replacing it with a Type-A to Type-C cable.

		· · · ·	Para	meter Open Port
			Open Param	eter From File
		and the second	Save Paran	teter To File
			Upload F	arameter
		_	Download	Parameter
			Save Param	eter To Flash
Roll Angle	Pitch Angle Yaw Angle		Gir	Ibal
Acce X Gyro X	Acce Y Gyro Y	Acce Z Gyro Z	Gimbal Run	Gimbal Stop
Gimbal Angle Angle 0 Angle 1 Angle 2		Gyro Calbration		
Communication	Lost !			
			Open Firmware	Start Upgrade

Q Visit the www.allxianfei.com for more information in the Video Center.

Real-time Video Playing

Example as camera IP address 192.168.144.108: Stream address: rtsp://192.168.144.108/554

Appendix 1 Dimensions

Unit: mm

Appendix 2 SEI Data Structure

typedef struct // 64 bytes. Little-endian byte order. Byte alignment uint8 thead[2]; // Header [0xEE, 0x16] struct uint8 trng trig:1; // Ranging trigger flag uint8 t pip state:3; // Pic-in-Pic Statue 0-Zoom camera (main)+Thermal camera (sub); 1-Thermal camera: 2-Thermal camera (main)+ Zoom camera (sub); 3-700m camera uint8 t data valid:1; //Validity flag of carrier's coordinate, carrier's attitude and camera's attitude uint8 t tgt valid:1; //Validity flag of target's coordinate uint8 t reserved:2; // Reserved flag } flag; int32 t uav lon; // Longitude of carrier. [-180°, 180°). Resolution 1e-7deg int32 t uav lat; // Latitude of carrier. [-90°, 90°]. Resolution1e-7deg int32 tuav alt; // Altitude of carrier. Resolution 1mm int32 tuav hgt; // Relative height of carrier. Resolution 1mm int16 tuav phi; // Roll angle of carrier. [-180°, 180°). Resolution 0.01deg int16 t uav the; // Pitch angle of carrier. [-90°, 90°]. Resolution 0.01deg uint16 t uav psi; // Yaw angle of carrier. [0°, 360°). Resolution 0.01deg int16_t cam_phi; // Roll angle of camera. [-90°, 90°]. Resolution 0.01deg int16_t cam_the; // Pitch angle of camera. [-180°, 180°). Resolution 0.01deg uint16 t cam psi; // Yaw angle of camera. [0°, 360°). Resolution 0.01deg uint16 t cam1 zoom; // Zoom rate of zoom camera. Resolution 0.01x uint16 t cam2 zoom; // Zoom rate of thermal camera. Resolution 0.01x uint16 trng dist; // Distance from target. Resolution 0.1m (Invalid, 0) uint16 t gnss week; //GNSS week uint32 t gnss itow; //GNSS microsecond. Resolution 1ms int32 t tgt lon; // Longitude of target. [-180°, 180°). Resolution 1e-7deg (Invalid, 0) int32 t tgt lat; // Latitude of target. [-90°, 90°]. Resolution 1e-7deg (Invalid, 0) int32 ttgt alt; // Altitude of target. Resolution 1mm (Invalid, 0) uint16 t cam1 fl1x; // Focal length of zoom camera at 1x. Resolution 0.01mm uint16 t cam2 f1x; // Focal length of thermal camera at 1x. Resolution 0.01mm uint8 treserved[4]; // Reserved uint8 t check sum; // Checksum } SdSei t:

Appendix 3 MAVLink Configuration

ArduPilot

SERIAL1		
SERIAL1_BAUD	115	
SERIAL1_OPTIONS	1024	
SERIAL1_PROTOCOL	2	
SR1		
SR1_ADSB	0 Hz	
SR1_EXIT_STAT	0 Hz	
SR1_EXTRA1	0 Hz	
SR1_EXTRA2	0 Hz	
SR1_EXTRA3	0 Hz	
SR1_PARAMS	0 Hz	
SR1_POSITION	0 Hz	
SR1_RAW_CTRL	0 Hz	
SR1_RAW_SENS	0 Hz	
SR1_RC_CHAN	0 Hz	
MNT1		
MNT1_TYPE	4 (Gremsy) / 6 (SToRM32 Mavlink)	
RC1		
RC1_OPTOPN	213 (MOUNT1_PITCH)	
RC2		
RC2_OPTOPN	214 (MOUNT1_YAW)	
RC3		
RC3_OPTOPN	163 (MOUNT1_LOCK)	
CAM		
CAM_TRIGG_TYPE	3 (Mount)	

Q The MNT1_TYPE is recommended as 6. The MNT1_ROLL_MAX, MNT1_ ROLL_MIN, MNT1_PITCH_MAX, MNT1_PITCH_MIN, MNT1_YAW_MAX and MNT1_YAW_MIN will be configured automatically depend on data from the GCU. The angle limit should be set manual while the MNT1_ TYPE is 4.

Q The RC1~RC3 are just examples, which can be defined according to actual situation.

MAVLink		
MAV_1_CONFIG	TELEM2	
MAV_1_MODE	Custom / Gimbal	
MAV_1_RATE	115200 B/s	
Serial		
SER_TEL2_BAUD	115200 8N1	
Mount		
MNT_MAIN_PITCH	AUX1	
MNT_MAIN_YAW	AUX2	
MNT_MODE_IN	Auto (RC and Mavlink Gimbal)	
MNT_MODE_OUT	MAVLink gimbal protocol v2	
Camera Setup		
Trigger mode	Distance based, on command (Survey mode)	
Trigger interface	MAVLink (forward via MAV_CMD_IMAGE_START_ CAPTURE)	

Q. The MAV_1_MODE is recommended as Custom.

 $\mathbf{Q}_{\mathbf{v}}$ The AUX1 and AUX2 are just examples, which can be defined according to actual situation. It should be configured in RC Map for further application.

 \mathbf{Q} The trigger mode is just an example, which can be modified according to actual situation.

Appendix 4 MAVlink Communication Process

After receiving HeartBeat from the flight controller, and identifying SYSID and COMPID of the flight controller, GCU will operate as below:

- 1. GCU actively sends package *MAVLINK_MSG_ID_HEARTBEAT 0* at a frequency of 2Hz.
- GCU requests following packages in turn at a frequency of 1Hz. The flight controller fills these parameters into package MAVLINK_MSG_ID_ COMMAND_LONG 76 until the request completing.: MAVLINK_MSG_ID_EKF_STATUS_REPORT 193 (No this package for PX4); MAVLINK_MSG_ID_GLOBAL_POSITION_INT 33; MAVLINK_MSG_ID_SCALED_IMU 26; MAVLINK_MSG_ID_SYSTEM_TIME 2; MAVLINK_MSG_ID_RC_CHANNELS 65; MAVLINK_MSG_ID_CAMERA_TRIGGER 112 (No this package for APM); MAVLINK_MSG_ID_AUTOPILOT_STATE_FOR_GIMBAL_DEVICE 286; MAVLINK_MSG_ID_GIMBAL_DEVICE_SET_ATTITUDE 284 (No this package for APM);
- 3. GCU actively sends package *MAVLINK_MSG_ID_GIMBAL_DEVICE_ ATTITUDE_STATUS 285* at a frequency of 100 Hz while the packages above being received and the pod being operational.
- 4. Generally, the flight controller will request package *MAVLINK_MSG_ID_GIMBAL_DEVICE_INFORMATION 283*, which GCU does not send actively.