
ANHE313 InSb Hall Element

- · Ultra High-sensitivity InSb Hall element
- · Thin-type SIP Package
- · Shipped in Bulk by Pack (500pcs devices per pack)

Absolute Maximum Rating

Dimensional Drawing (Unit: mm)

ltem	Symbol	Conditions	Limit	Unit
Maximum Input Current	I cmax	T _a = 25℃	20	mA
Operating Temperature Range	T opr		-55 ~ +125	${\mathbb C}$
Storage Temperature Range	T _{STG}		-55 ~ +150	${\mathbb C}$

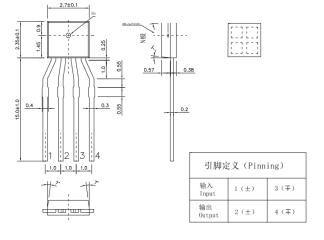


Figure 1. Maximum input current I_{cmax}

Electrical Characteristics (RT=25°C)

Table 1. Electrical Characteristics of ANHE313

Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
Hall Voltage	V H	B = 50mT, V c=1V T _a = RT	168		465	mV
Input Resistance	R in	B = 0mT, I_C = 0.1mA T_a = RT	240		550	Ω
Output Resistance	R out	B = 0mT, I_C = 0.1mA T_a = RT	240		550	Ω
Offset Voltage	V os	B = 0mT, V _C = 1V T _a = RT	-7		+7	mV
Temp. Coeffi. of V _H	α / ⁄	B = 50mT, I _C =5mA, T _a = 0°C ~ 40°C		-1.8		%/°C
Temp. Coeffi. of R _{in}	α <i>R</i> in	B = 0mT, I _C =0.1mA, T _a = 0°C ~ 40°C		-1.8		%/°C
Dielectric strength		100V D.C	1.0			МΩ

Note:

1.
$$V_{\rm H} = V_{\rm H-M} - V_{\rm os}$$

In which $V_{\text{H-M}}$ is the Output Hall Voltage, V_{H} is the Hall Voltage and V_{os} is the offset Voltage under the identical electrical stimuli.

2.
$$\alpha V_H = \frac{1}{V_H(T_1)} \times \frac{V_H(T_3) - V_H(T_2)}{(T_3 - T_2)} \times 100$$

3.
$$\alpha R_{in} = \frac{1}{R_{in}(T_1)} \times \frac{R_{in}(T_3) - R_{in}(T_2)}{(T_3 - T_2)} \times 100$$

$$T_1 = 20$$
°C, $T_2 = 0$ °C, $T_3 = 40$ °C

Classification of Output Hall Voltage ($V_{\!\!\!H}$)

Table 2. Classification of Hall Voltage

Rank	V _H [mV]	Conditions	
С	168 ~ 204		
D	196 ~ 236		
E	228 ~ 274		
F	266 ~ 320	B=50mT, / ⁄c=1V	
G	310 ~ 370		
Н	360 ~ 415		
I	405 ~ 465		

Characteristic Curves

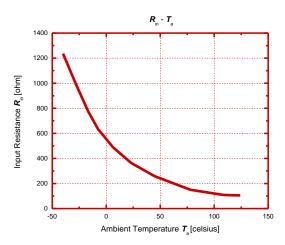
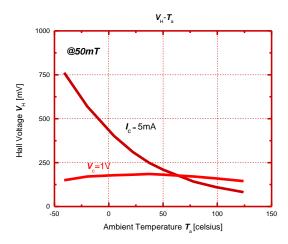



Figure 2. Input resistance $R_{\rm in}$ as a function of ambient temperature $T_{\rm a.}$

Figure 4. Hall voltage $V_{\rm H}$ as a function of ambient temperature $T_{\rm a.}$

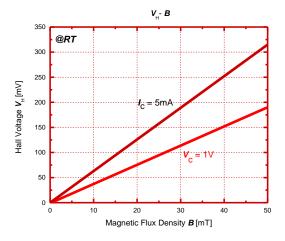
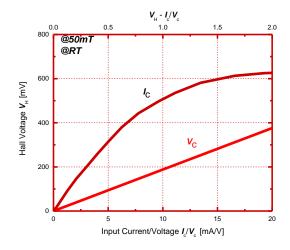



Figure 3. Hall voltage $\emph{V}_{\textrm{H}}$ as a function of magnetic flux density $\emph{\textbf{B}}.$

Figure 5. Hall voltage $\emph{V}_{\textrm{H}}$ as a function of electrical stimuli $\emph{I}_{\textrm{c}}/\emph{V}_{\textrm{c}}$.

Reliability Test Terms

Table 2. Reliability Test Terms, Conditions and Duration.

No.	Terms	Conditions	Duration
1	High Temperature Storage (HTS)	【JEITA EIAJ ED-4701】 7 a =150(0~+10)℃	1000 hrs
2	Heat Cycle (HC)	[JEITA EIAJ ED-4701] $T_a = -55^{\circ}\text{C} \sim 150 ^{\circ}\text{C}$ high temp normal temp low temp. $30 \text{min} - 5 \text{min} - 30 \text{min}$	30 cycles
3	Temp. Humidity Storage (THS)	【JEITA EIAJ ED-4701】 <i>T₃</i> =85±3 °C, <i>R</i> _H =85±5 %	1000 hrs
4	Resist. to Hand Soldering Heat (RHSH)	【JEITA EIAJ ED-4701】 Dipped in the 300±5 ℃ solder up to the 1 mm part from the body	5 sec
5	High Temp. Operating (HTO)	7 _a =125 °C , V _c =1V	1000 hrs

Criteria:

- Variation of Hall Voltage $V_{\rm H}$ and input/output resistances $\emph{R}_{\rm in/out}$ are less than 20%.
- Variation of offset voltage V_{os} is less than $\pm 16 \text{mV}$.
- Other parameters in **Table 1**. are still within their ranges stated in **Table 1**.

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is depend on solder paste material and other parameters.

Material of solder flux

- Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one.

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

Hand soldering conditions

- Apart from the mold resin more than 1mm.
- Solder at temperature 300 °C for less than 5s.

Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 280 $^{\circ}\text{C}.$

Rev 10

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with

the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5°C to 35°C, 40%RH to 60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H₂O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.