

AHW-105C InSb Hall Element

- Linear InSb Hall element
- Ultra Thin SOT Package
- Shipped in packet-tape reel (4,000pcs per reel)

Absolute Maximum Rating

Dimensional Drawing (Unit: mm)

Operating Temperature Range	-40°C [~] 125°C
Storage Temperature Range	-55℃ ~ 150℃
Maximum Input Current $oldsymbol{I}_{\scriptscriptstyle{ ext{cmax}}}$	20mA

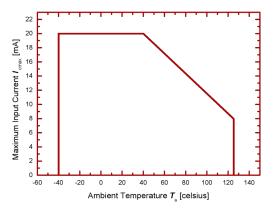
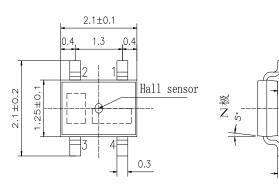
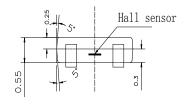




Figure 1. Maximum input current $\emph{\textbf{I}}_{cmax}$

引脚定义 (Pinning)			
输入 Input	1 (±)	3 (∓)	
输出 Output	2 (±)	4 (∓)	

0~0.1

Electrical Characteristics (RT=25°C)

Table 1. Electrical Characteristics of AHW-105C

Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
Hall Voltage	V _H	$\boldsymbol{B} = 50 \text{mT}, \boldsymbol{V}_{c} = 1 \text{V}$ $\boldsymbol{T}_{a} = \text{RT}$	41		76	mV
Input Resistance	$ extit{\emph{R}}_{ ext{in}}$	$\boldsymbol{B} = \text{OmT}, \boldsymbol{I}_{\text{c}} = \text{O.1mA}$ $\boldsymbol{T}_{\text{a}} = \text{RT}$	250		450	Ω
Output Resistance	$ extcolor{R}_{ m out}$	$m{B} = 0 \mathrm{mT}, m{I}_{\mathrm{c}} = 0.1 \mathrm{mA}$ $m{T}_{\mathrm{a}} = \mathrm{RT}$	250		450	Ω
Offset Voltage	V ₀s	$\boldsymbol{B} = \text{OmT}, \boldsymbol{V}_{\!\!\scriptscriptstyle C} = 1\text{V}$ $\boldsymbol{T}_{\!\!\scriptscriptstyle a} = \text{RT}$	-7		+7	mV
Temp. Coeffi. of $V_{\scriptscriptstyle \rm H}$	α γ _H	$\boldsymbol{B} = 50 \text{mT}, \boldsymbol{I}_{c} = 5 \text{mA},$ $\boldsymbol{T}_{a} = 0 \text{°C} ^{\sim} 40 \text{°C}$		-1.8		%/°C
Temp. Coeffi. of $\emph{\textbf{R}}_{ ext{in}}$	α R _{in}	$m{B} = 0 \mathrm{mT}, m{I}_{\mathrm{c}} = 0.1 \mathrm{mA},$ $m{T}_{\mathrm{a}} = 0 ^{\circ}\mathrm{C} ^{\sim} 40 ^{\circ}\mathrm{C}$		-1.8		%/°C

ote:

.
$$V_{\rm H} = V_{\rm H-M} - V_{\rm os}$$

In which $\emph{\textbf{V}}_{\text{H-M}}$ is the Output Hall Voltage, $\emph{\textbf{V}}_{\text{H}}$ is the Hall Voltage and $\emph{\textbf{V}}_{\text{os}}$ is the offset Voltage under the identical electrical stimuli.

.
$$\alpha V_H = \frac{1}{V_H(T_1)} \times \frac{V_H(T_3) - V_H(T_2)}{(T_3 - T_2)} \times 100$$

.
$$\alpha R_{in} = \frac{1}{R_{in}(T_1)} \times \frac{R_{in}(T_3) - R_{in}(T_2)}{(T_3 - T_2)} \times 100$$

$$T_1 = 20$$
°C, $T_2 = 0$ °C, $T_3 = 40$ °C

Classification of Output Hall Voltage ($V_{\!\scriptscriptstyle H}$)

Table 2. Classification of Hall Voltage

Rank	V _H [mV]	Conditions		
Q	$41 \sim 57$	D-50mT V -1V		
R	51 ~ 76	B=50mT, V _c =1V		

Characteristic Curves

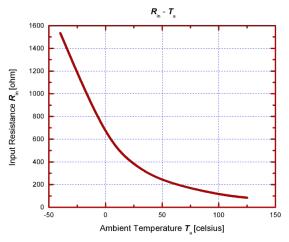


Figure 2. Input resistance $\emph{\textbf{R}}_{in}$ as a function of ambient temperature $\emph{\textbf{T}}_{a.}$

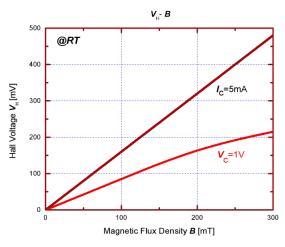


Figure 3. Hall voltage $\emph{V}_{\textrm{H}}$ as a function of magnetic flux density $\emph{\textbf{B}}.$

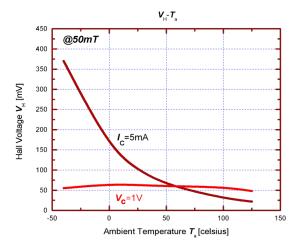


Figure 4. Hall voltage $\textbf{\textit{V}}_{H}$ as a function of ambient temperature $\textbf{\textit{T}}_{a.}$

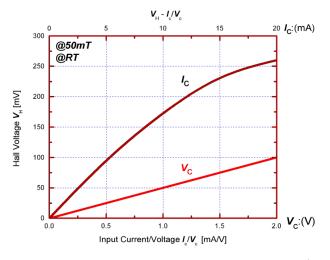


Figure 5. Hall voltage $\textbf{\textit{V}}_{H}$ as a function of electrical stimuli $\textbf{\textit{I}}_{C}/\textbf{\textit{V}}_{C}.$

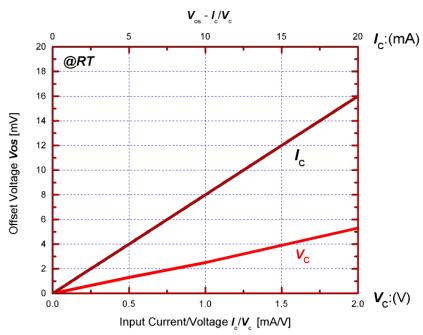


Figure 6. Offset voltage \emph{V}_{os} as a function of electrical stimuli $\emph{I}_{c}/$ $\emph{V}_{c.}$

Reliability Test Terms

Table 2. Reliability Test Terms, Conditions and Duration.

No.	Terms	Conditions	Duration
1	High Temperature Storage (HTS)	[JEITA EIAJ ED-4701] $T_a = 150 (0 ^{\sim} +10) ^{\circ}\text{C}$	1000 hrs
2	Heat Cycle (HC)	[JEITA EIAJ ED-4701] ${\it T}_a = -55 {\rm C}^{\sim} 150 {\rm C}$ high temp normal temp low temp. $30{\rm min}-5{\rm min}-30{\rm min}$	30 cycles
3	Temp. Humidity Storage (THS)	[JEITA EIAJ ED-4701] $ T_a = 85 \pm 3 ^{\circ}\text{C}, \textit{R}_{\textit{H}} = 85 \pm 5 \% $	1000 hrs
4	Reflow Soldering (RS)	【JEITA EIAJ ED-4701】 260 ± 5 $^{\circ}$ C	10 sec
5	High Temp. Operating (HTO)	$ extbf{\emph{T}}_{\scriptscriptstyle a}$ =125 °C, $ extbf{\emph{V}}_{\scriptscriptstyle c}$ =1V	1000 hrs

Criteria:

- Variation of Hall Voltage \emph{V}_{H} and input/output resistances $\emph{R}_{\mbox{\tiny in/out}}$ are less than 20%.
- Variation of offset voltage \emph{V}_{os} is less than $\pm\,16\text{mV}.$
- $^-$ Other parameters in **Table 1**. are still within their ranges stated in **Table 1**.

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is depend on solder paste material and other parameters.

Material of solder flux

 $^-$ Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

Hand soldering conditions

- Apart from the mold resin more than 1mm.
- Solder at temperature 300 $\,^{\circ}\!\!$ C for less than 5s.

Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 270°C.

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5° C to 35° C, 40%RH to 60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H_2O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.