AHW-322B InSb Hall Element

- · Ultra High-sensitivity InSb Hall element
- · Thin-type SIP Package

APSEMI

®

· Shipped in Bulk by Pack (500pcs devices per pack)

Absolute Maximum Rating

Figure 1. Maximum input current Icmax

Electrical Characteristics (RT=25°C)

Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
Hall Voltage	И	B = 50mT, V c=1V T a = RT	168		465	mV
Input Resistance	R in	B = 0mT, I_{c} = 0.1mA T_{a} = RT	240		550	Ω
Output Resistance	R out	B = 0mT, I _c = 0.1mA T _a = RT	240		550	Ω
Offset Voltage	Vos	B = 0mT, V _C = 1V T _a = RT	-7		+7	mV
Temp. Coeffi. of V H	α // Η	B = 50mT, $I_{\rm C}$ =5mA, $T_{\rm a}$ = 0°C ~ 40°C		-1.8		%/°C
Temp. Coeffi. of R in	α R in	B = 0mT, I_{c} =0.1mA, T_{a} = 0°C ~ 40°C		-1.8		%/°C
Dielectric strength		100V D.C	1.0			MΩ

 Table 1. Electrical Characteristics of AHW-322B

Dimensional Drawing (Unit: mm)

 $V_{\rm H} = V_{\rm H-M} - V_{\rm os}$

In which $V_{\text{H-M}}$ is the Output Hall Voltage, V_{H} is the Hall Voltage and V_{os} is the offset Voltage under the identical electrical stimuli.

$$\alpha V_{H} = \frac{1}{V_{H}(T_{1})} \times \frac{V_{H}(T_{3}) - V_{H}(T_{2})}{(T_{3} - T_{2})} \times 100$$

$$\alpha R_{in} = \frac{1}{R_{in}(T_{1})} \times \frac{R_{in}(T_{3}) - R_{in}(T_{2})}{(T_{3} - T_{2})} \times 100$$

$$T_{1} = 20^{\circ}\text{C}, \quad T_{2} = 0^{\circ}\text{C}, \quad T_{3} = 40^{\circ}\text{C}$$

Classification of Output Hall Voltage ($\ensuremath{\textit{V}_{\text{H}}}$)

Rank	ℓ⁄ ⊦ [mV]	Conditions	
С	168 ~ 204		
D	196 ~ 236		
E	228 ~ 274		
F	266 ~ 320	B=50mT, I∕ c=1V	
G	310 ~ 370		
Н	360 ~ 415		
I	405 ~ 465		

Table 2. Classification of Hall Voltage

Characteristic Curves

Figure 2. Input resistance R_{in} as a function of ambient temperature $T_{a.}$

Figure 4. Hall voltage $V_{\rm H}$ as a function of ambient temperature $T_{\rm a}$.

Figure 3. Hall voltage $V_{\rm H}$ as a function of magnetic flux density B.

Figure 5. Hall voltage V_{H} as a function of electrical stimuli $I_{\text{c}}/V_{\text{c}}$.

Reliability Test Terms

No.	Terms	Conditions	Duration
1	High Temperature Storage (HTS)	【JEITA EIAJ ED-4701】 7 a =150(0 ~ +10)℃	1000 hrs
2	Heat Cycle (HC)	【JEITA EIAJ ED-4701】	30 cycles
3	Temp. Humidity Storage (THS)	【JEITA EIAJ ED-4701】 <i>Т_а</i> =85±3 °С, <i>R</i> н=85±5 %	1000 hrs
4	Resist. to Hand Soldering Heat[JEITA EIAJ ED-4701](RHSH)Dipped in the 300±5 °Csolder up to the 1 mm part from the body		5 sec
5	High Temp. Operating (HTO)	T_{a} =125 °C , V_{c} =1V	1000 hrs

Table 2. Reliability Test Terms, Conditions and Duration.

Criteria:

- Variation of Hall Voltage $V_{\rm H}$ and input/output resistances $R_{\rm in/out}$ are less than 20%.
- Variation of offset voltage V_{os} is less than ±16mV.
- Other parameters in Table 1. are still within their ranges stated in Table 1.

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is

depend on solder paste material and other parameters.

Material of solder flux

- Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one.

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

Hand soldering conditions

- Apart from the mold resin more than 1mm.
- Solder at temperature 300 °C for less than 5s.

Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 280°C.

G[®] APSEMI

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with

the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5°C to 35°C, 40%RH to

60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.

- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with

MBB sealed. Oxygen and H₂O of atmosphere oxidizes leads of products and lead solder ability get

worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical

processing.

- Observe laws and company regulations when discarding this product.