应用案例

EG 网关串口连接台达 PLC

V1.0 河北蓝蜂信息科技有限公司 2021-05-31

EG 网关串口连接台达 PLC

一. 准备工作	1
1.1 在对接前我们需准备如下物品	1
1.2 EG20 网关准备工作	1
1.3 PLC 准备工作。	1
二. PLC 的 modbus 从站创建。	2
三. EMCP 平台设置。	4
3.1 新增 EG 设备	4
3.2 远程配置网关	6 6
四. 实验效果	10
五. 辅助功能介绍	11
5.1 画面组态功能	11
5.2 微信功能	12
5.3 报警推送功能	12
5.4 历史报表和历史曲线功能	13
六. 新增账号	16
6.1 视频监控功能	16
6.2 図格定制/系统定制服务	16

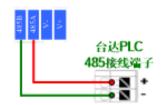
前言: 台达 PLC 是一款国产优秀的可编程控制器,广泛应于工业控制领域,是一款性能高,运行稳定的控制器。此次我们要把台达 DVP-ES 系列 PLC 通过 modbus 驱动连接到 EMCP 物联网云平台(简称 EMCP),实现电脑 Web 网页、手机 APP 和微信对台达 PLC(D0/D1/Y0/Y2)寄存器的远程监控和 D100和 Y20的远程读写。

一. 准备工作

1.1 在对接前我们需准备如下物品

- 1) 台达 PLC 一台 (注意带 COM2 或 3 通讯串口) , 和自带的编程电缆。
- 2) 河北蓝蜂科技的 EG20 网关一台,天线和电源适配器(以下用 EG20 作为实例)。
- 3) SIM 卡一张, 有流量, 大卡(移动, 联通或者电信卡)。
- 4) 联网电脑一台 (WinXP/Win7/Win8/Win10操作系统)。
- 5) 电工工具、导线若干。

1.2 EG20 网关准备工作

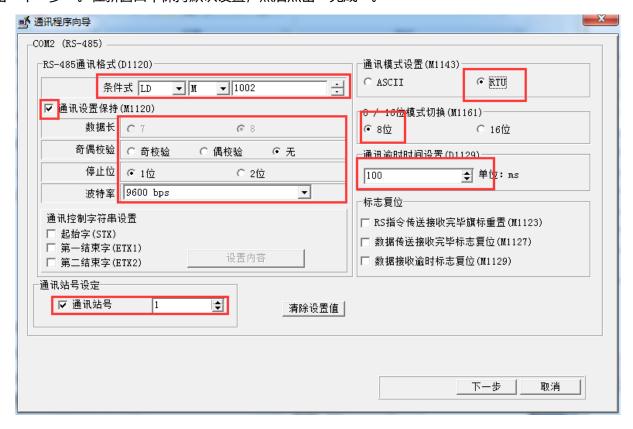

网关相关技术参数与使用说明,可参考《EG20 用户使用手册》。

- 1、保证网关可以正常联网,可通过 4G 卡 (移动/联通/电信流量卡,大卡)联网 (需接上随网关附带的天线)或通过网线联网 (需将路由器出来的网线接到网关的 WAN 口);
- 2、网关接 <mark>12V 或 24V 直流电源</mark>,上电。 (注意,电源正负极不要接反)。

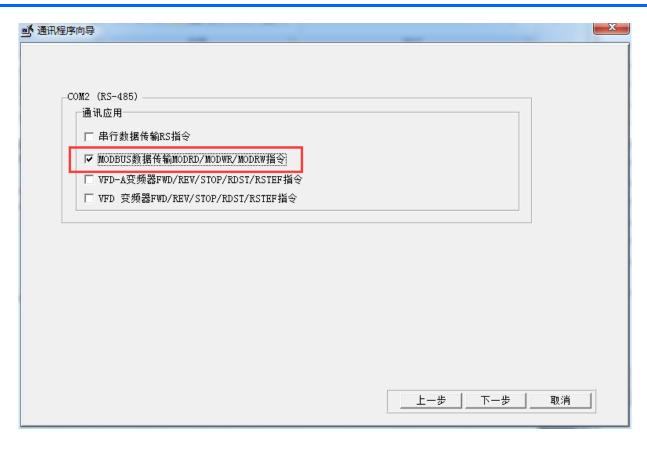
1.3 PLC 准备工作。

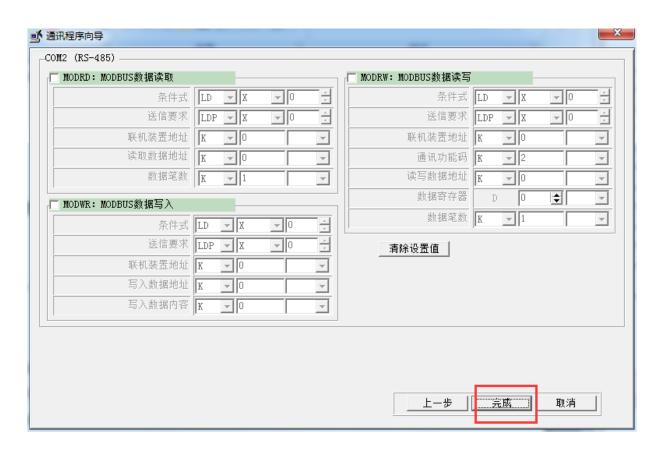
PLC 连接电源(注意电源是 24VDC 还是 220VAC),将编程电缆插上 PLC 的 COM1 口,另一端连电脑的 COM 口(或是 USB-232 线),PLC 的 485 串口(COM2 +/-端子)连接到 EG20 的 485A 和 485B 接线端子(也可以使用 COM3,这里统一按 COM2 口进行讲解)。如下图:


台达PLC连接EG20


二. PLC的 modbus 从站创建。

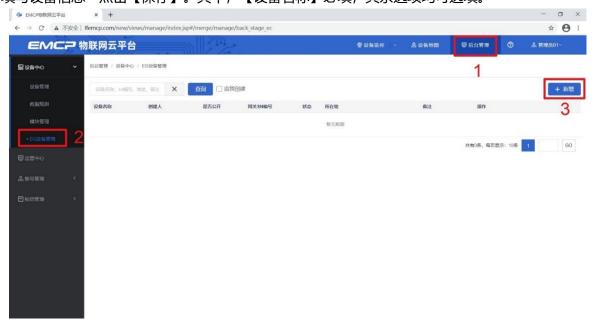
打开《Delta WPLSoft》编程软件,打开程序,选择好自己的 PLC 型号和 COM1 编程通讯参数。然后进行 COM2 的 RS485 通讯参数设定,本文使用 DVP-60ES 型号进行说明,其他同系列型号操作基本一致。在梯形图编辑窗口中,选中一行空白行,点击菜单栏的"向导",选择"通讯程序",如下图。




进入 COM 口参数选择界面,(某些型号会让您选择设定的 COM 口,选择自己要连接 EG20 的 PLC 串口,这里我们选择 COM2)选择完 COM 口后点击 "下一步"。设置 COM2 串口参数进行如下图设置。确保设置无误后点击 "下一步",

然后选择选择通讯应用中选择"MODBUS 数据传输/MODRD/MODWR/MODRW 指令"之后一直点击"下一步"。在新窗口中保持默认设置,然后点击"完成"。

在梯形图中自动生成通讯参数程序,如下图:

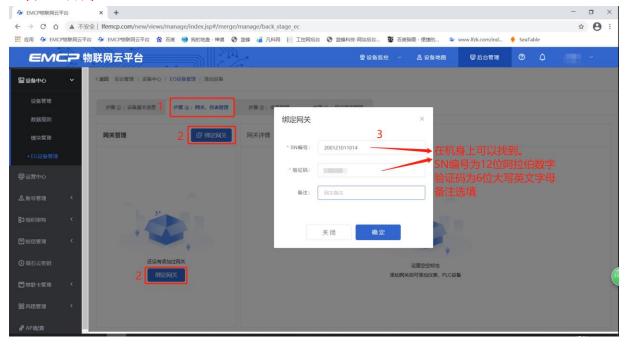

台达 PLC 内部集成了 MODBUS-RTU 功能,按如上对 COM2 口的通讯设置就完成了台达 PLC MODBUS 从站的建立。

三. EMCP 平台设置。

用管理员账号登录 EMCP 平台 www.lfemcp.com (建议使用 360 浏览器极速模式、谷歌浏览器 (Google Chrome)或者支持 Chromium 内核的浏览器),对 EMCP 云平台进行设置。具体操作参照《EMCP 物联网云平台用户手册》。登录 EMCP 后首先进入设备列表显示页面,因为我们未创建任何设备,所以是一个空页面,我们需要按照以下步骤进行操作。

3.1 新增 EG 设备

步骤:点击【后台管理】(只有管理账号才有此权限)→【设备中心】→【EG 设备管理】→【+新增】 → 填写设备信息→点击【保存】。其中,【设备名称】必填,其余选项均可选填。


3.2 远程配置网关

EG 设备管理网关配置中最主要两个地方需要配置,一是配置网串口通讯参数,二是创建 modbus 驱动,下面分步骤对此功能进行讲解。注:网关只有在线后才可以进行远程配置。

3.2.1 网关绑定

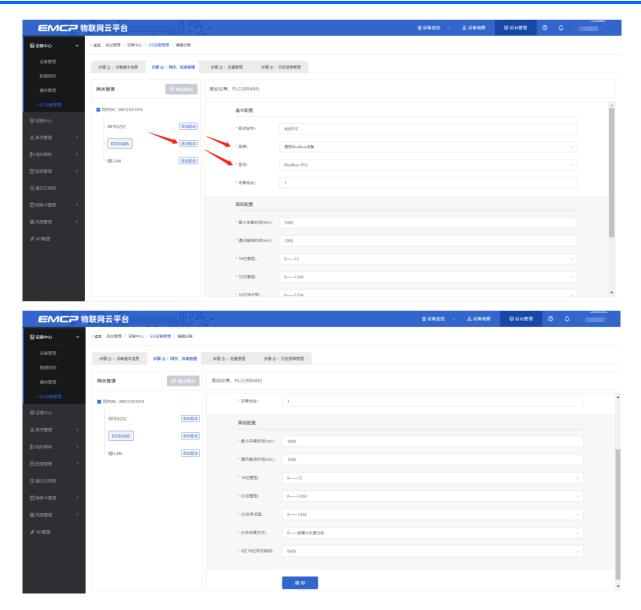
步骤:点击【步骤②:网关、仪表管理】→【绑定网关】→填写【SN编号】和【验证码】→【确定】。 SN 和验证码在网关的机壳标签上,SN为 12位纯阿拉伯数字,验证码为6位英文字母,【备注】可以根据需求填写,编辑完成后点击【确定】。

(带*必填项)

此时在"网关基本信息中"可以看到绑定的网关是否连接到平台(成功登录平台可以看到"在线"绿色字样,如果不成功则显示"离线"灰色字样,此时请检查网络或网络信号)。

3.2.2 通讯参数设置

使用串口 RS485 通讯,需设置 RS485 通讯参数。



3.2.3 创建设备驱动

在网关上连接的每一个设备,都需要建立对应的设备驱动。就像电脑上插了一个鼠标,只有电脑系统 里安装了这个鼠标的驱动,电脑才能识别到这个鼠标。设备跟网关通过哪个通讯口连接,就在哪个通讯口 下添加驱动。如图所示,点击【RS485】后面的【添加驱动】出现右侧基本配置表进行配置。

注:配置完成后,点击保存。

基本配置介绍:

【驱动名称】: 必填项, 自定义即可, 当有多个驱动时进行区分。

【品牌】:必填项,选择"通用 modbus 设备"。

【型号】: 必填项, 选择 "Modbus RTU"。

【设备地址】:必填项,设备地址根据台达 PLC 设置的从站号进行填写,本案例 PLC 从站号为"1",所以此处填"1"。

【最小采集周期】: 是网关采集设备数据的时间间隔,单位: ms。如设置 1000ms,即网关 1s 采集一次设备数据。

【通讯等待时间】:网关接收通讯数据等待时间。可根据需要进行调整,默认 1000ms。

【16 位整型】、【32 位整型】、【32 位浮点型】: 是指对应数据类型的解码顺序。默认设置即可

【分块采集方式】:0— 按最大长度分块:采集分块按最大块长处理,对地址不连续但地址相近的多个

分块,分为一块一次性读取,以优化采集效率; 1— 按连续地址分块: 采集分块按地址连续性处理,对地址不连续的多个分块, 每次只采集连续地址,不做优化处理。直接选择默认即可。

【4区16位写功能码】:写4区单字时功能码的选择。直接选择默认即可。

3.2.4 添加变量

步骤:点击【步骤③:变量管理】→【+添加变量】→填写变量信息→【保存】。

变量介绍:

【仪表、PLC】:必填,选择刚才创建的驱动即可。根据实际情况选择。

【变量名称】:必填,自定义即可。<mark>注意不能有重复的名称。</mark>【线圈(Ox)】

【单位】:非必填,自定义即可。在列表展示时,变量会带上单位展示。

【寄存器类型】: 必填, 在台达 PLC 中, 0XXXXXX 对应【线圈 (0x) 】; 1XXXXXX 对应【离散量 (1x) 】; 4XXXXX 对应【保持寄存器 (4x) 】。

【寄存器地址】:必填,地址填写时不带寄存区标志符,具体对应设置见下方图片。

【数据类型】: 必填, 根据实际需要选择即可。

【小数位数】: 非必填, 根据需求填写。

【死区设置】:非必填,默认即可。根据需要填写即可。更详细的说明请参考后面"?"帮助。

【状态列表】: 非必填。可将数值直接与文本映射。如值为"10",映射字段为"设备故障",则当采集到变量的值为"10"时,会直接在设备监控和历史报表中显示"设备故障"。

【数值运算】: 非必填。可将采集到的数据根据填写的公式进行计算,更详细的说明请参考后面的"?"帮助。

【读写方式】:可根据需求自行修改该寄存器的读写方式,默认为只读。

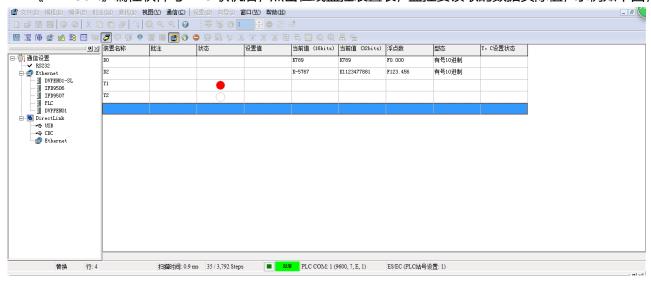
PLC 内部寄存器与 MODBUS 地址对应关系在《台达 PLC 通讯协议 v1.1》中有详细说明,如下图:

備註3: DVP Series PLC Internal Device Communication Address

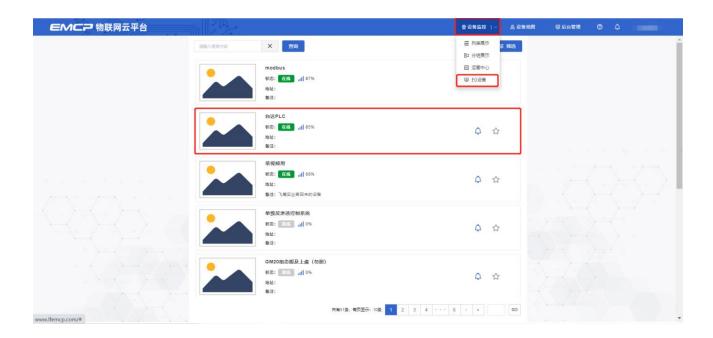
Device	Range Type DVP 通訊位址 Modbus 通訊位 (Hex) (Dec)	Tune	DVP 通訊位址	Modbus 通訊位址	Effective			
Device		(Dec)	ES/EX/SS	SA/SX/SC	EH			
S	000~255		bit	0000~00FF	000001~000256			
S	246~511		bit	0100~01FF	000247~000512	0~127	0~1024	0~1024
S	512~767		bit	0200~02FF	000513~000768			
S	768~1023		bit	0300~03FF	000769~001024			
Х	000~377 (Octal)	bit	0400~04FF	101025~101280	0~177	0~177	000~377
Υ	000~377 (Octal)	bit	0500~05FF	001281~001536			
Т	000~255		bit	0600~06FF	001537~001792	0~127	000~255	000~255
'	000-200		word	0600~06FF	401537~401792	0-127		
М	000~255		bit	0800~08FF	002049~002304			
M	256~511		bit	0900~09FF	002305~002560			
M	512~767		bit	0A00~0AFF	002561~002816			
M	768~1023		bit	0B00~0BFF	002817~003072			
M	1024~1279 1280~1535		bit	0C00~0CFF	003073~003328	Ī	[]] 1
M			bit	0D00~0DFF	003329~003584] [
М	1536~1791		bit	B000~B0FF	045057~045312			1 1
М	1792~2047		bit	B100~B1FF	045313~045568	0 4070	0 4005	0000 4005
М	2048~2303	3	bit	B200~B2FF	045569~045824	0~1279	0~4095	0000~4095-
М	2304~2559	9	bit	B300~B3FF	045825~046080			
М	2560~281	5	bit	B400~B4FF	046081~046336	•		
М	2816~307	1	bit	B500~B5FF	046337~046592			
М	3072~3327	7	bit	B600~B6FF	046593~046848			
М	3328~3583		bit	B700~B7FF	046849~047104]]
М	3584~3839		bit	B800~B8FF	047105~047360			
М	3840~4095		bit	B900~B9FF	047361~047616			1 1
	0~199	16-bit	bit	0E00~0EC7	003585~003784	0~127	0~199	0~199
С	וי פפו~ט		word	0E00~0EC7	403585~403784	0~127	0~199	0~199
	200~255	32-bit	bit	0EC8~0EFF	003785~003840	232~255	200~255	200~255
	200 200 0	/E-1/II	Dword	0EC8~0EFF	403785~403840	232~255	200~255	200~255

PLC 各寄存区变量在平台添加填写示例如下图所示:

寄存器类型	PLC 内部地址	变量列举	寄存器地址	
线圈 (0x)	S, Y, T, M, C	M1(000001)	2050	
离散量输入 (1x)	X	X10(101035)	1035	
保持寄存器 (4x)	T (word) , C (word) , D	T100 (word) (40163)	1637	
输入寄存器 (3x)	无			


注:根据台达 PLC 寄存器地址和 modbus 地址对应关系表进行设置。

添加完成后,【变量管理】如下图所示,此时可以点击【数据测试】按钮检查变量值能否采集到,或者值是否正确。



四. 实验效果

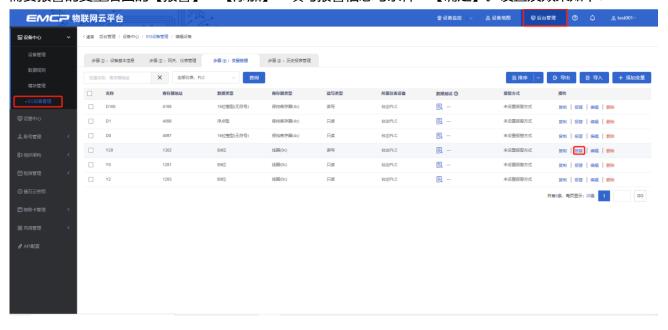
《WPLSoft》编程软件与 PLC 联机后,点击在线监控装置表,监控要读取的数据实际值,示例如下图;

用户登录 EMCP 平台(<u>www.lfemcp.com</u>), 点击"台达 PLC"设备的图片或设备名称进入 EG 设备即可查看、修改相关数据。

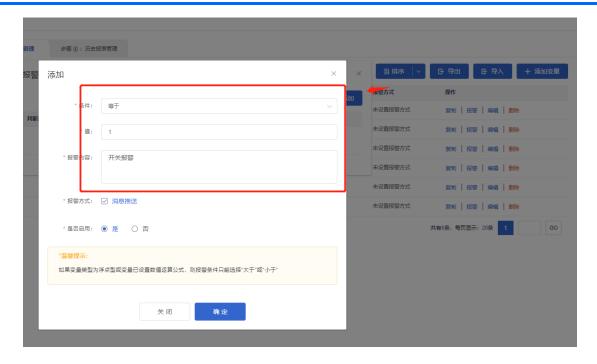
五. 辅助功能介绍

5.1 画面组态功能

通过"点击【后台管理】→【EG 设备管理】→【组态编辑】→启用【组态方式】"这几个步骤来选择使用组态展示形式来展示对应数据规则。点击【组态页面管理】中【编辑】项,进入编辑页面。通过组态编辑页面我们可以任意绘制图片、文字、数显框、按钮、指示灯、管道、设备等等控件,详细功能请参考《EG 设备组态编辑使用说明》。


5.2 微信功能

微信关注 "EMCP 物联网云平台"公众号,按照提示绑定平台账号,即可使用微信监控设备,接收报警信息。为了便于对设备的管理,建议将 "EMCP 物联网云平台"公众号置顶。



5.3 报警推送功能

可以根据需要给变量设置报警,当产生报警时,会在电脑网页端进行报警展示,在手机 APP 和微信进行报警推送。设置步骤:点击【后台管理】→【EG 设备管理】→【编辑】→【步骤③:变量管理】→点击需要报警的变量后面的【报警】→【添加】→填写报警信息与条件→【确定】。设置及效果如下:

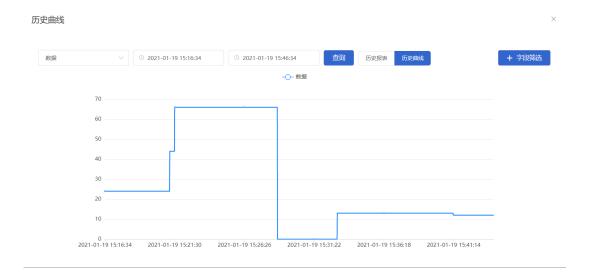
5.4 历史报表和历史曲线功能

【历史报表】可以满足不同的应用场景下,来记录历史数据,【历史曲线】是根据报表生成的曲线, 方便客户以曲线形式查看变量变化趋势。添加步骤:点击【后台管理】→【EG设备管理】→【编辑】→【步骤④:历史报表管理】→【+添加报表】→填写变量信息→【保存】。

这里我们可以根据需要创建多种类型的数据报表, EG20 作为边缘计算网关, 会将报表在本地存储一份, 定期同步到平台, 即使出现网络中断也可以保证历史数据的连续性、准确性(断点续传)。

周期存储:按照固定时间间隔,定时对数据存储记录。

条件存储: 当某一变量到达一定条件, 对部分数据进行"间隔存储"或"单次存储"。


变化存储: 当某一变量变化超出一定范围后(高低限),对部分数据进行单词记录(如:某一数据报警后对关联数据进行记录)。

历史报表

六. 新增账号

管理员账号创建完设备后,可以通过【账号管理】选项为用户创建一个单独的账号供其访问所属的设备。此功能主要为用户开通一个专属的账号,用户查看自己所属的设备。【内部账号】同属于一个数据池,内部账号相互之间可以授权设备;【外部账号】与【内部账号】分属不同的数据池,内外部账号之间不可以相互授权设备。具体内容见《EMCP 云平台账号管理使用说明 V1.0》和《EMCP 云平台组织架构使用说明 V1.1》。

6.1 视频监控功能

EMCP 平台可实现萤石云摄像头的接入,从而实现 web、APP、微信等终端对现场视频监控功能。具体操作方法见《EMCP 物联网云平台视频使用说明 V4.1》。

6.2 风格定制/系统定制服务

对于大中型企业,我们还为用户提供平台和软件定制服务,介绍如下;

风格定制服务:风格定制是在原有 EMCP 平台基础上实现用户个性化风格的显示,整个服务依旧运行在原 EMCP 平台服务器上的,布局、功能和架构等基础内容不做改变。风格定制内容主要体现在电脑网页、手机网页、安卓 APP、微信公众平台的登录域名、登录页、平台名称、平台图标等。适合企业品牌建设。

私有云部署服务:为将 EMCP 系统部署到用户的服务器上,除了显示风格的定制,还可以更改系统的功能的增加、布局显示的改变以及数据分析等服务。

如有需求可联系蓝蜂销售人员。

河北蓝蜂信息科技有限公司

技术支持: 400-808-6168

官方网站: www.lanfengkeji.com